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Abstract—Equations describing inhomogeneously broadened luminescence spectra of doped media are
derived within the framework of coherent-potential approximation (CPA). The dependence of the shape of these
spectra on the dopant concentration at a low temperature is studied. High precision of the CPA is shown by com-

parison with Monte Carlo simulations.

INTRODUCTION

The coherent-potential approximation (CPA) is
widely used in the calculation of various features of
disordered materials [1-3]. It was developed in [3-12]
for the problems of the theory of luminescence. Only
the positional disorder of impurity centers (donors and
acceptors of excitation) was taken into account. The
CPA was used for calculations of coefficients of diffu-
sion of excitations within the system of identical cen-
ters (donors) for both exchange and dipole—dipole
interaction, the quantum yield of luminescence of
donors, anisotropy of luminescence, and the rate of
concentration self-quenching [3, 12]. Comparison with
Monte Carlo simulations of these quantities showed the
good accuracy of CPA [3, 12].

The principle of the CPA is the following. A real dis-
ordered system of donor centers is replaced by aregular
lattice (for example, cubic) with donors located in its
sites. A lattice constant is determined by the concentra-
tion of donors. Interaction in such a lattice (effective
medium) occurs only between the nearest neighbors.
This interaction (the rate of excitation jump from one
center to another and the coherent potential) is consid-
ered to be dependent on time and is chosen in such a
way that the properties of an actual medium (described
by the Green function G) coincide with those of an
- effective lattice (described by the Green function G°):

G=G" (D

The CPA was not directly used for calculations of
spectral properties of media with inhomogeneous
broadening of impurity centers. In [13, 14], this
approximation was used to study dispersive transport of
charge carriers in disordered systems. The probability
of a charge carrier jump from one localized state to
another decreased exponentially with increasing jump dis-
tance. The results were compared with Monte Carlo sim-
ulations. It was found that the results obtained by these

methods were in good agreement at temperatures higher
than 50 K. At lower temperatures, the theory [13, 14]
yielded inadequate results. Therefore, the authors of
[15, 16] used another approach for describing the trans-
port of charge carriers at low temperatures. This
approach virtually coincides with that developed in
[17-20] and is the extension of the method of continu-
ous time random walk (CTRW) to the case of spectral
disorder of localized states.

Note that the problem of dispersive transport of
charge carriers is equivalent to the problem of migra-
tion of triplet excitations over the system of molecules
with different triplet energy levels [16]. The only differ-
ence is that, in the latter case, it is necessary to take into
account the finite lifetime of triplet states.

.- In this work, the CPA is used in its conventional
statement [3, 7]. Equations that describe a change of the
luminescence spectrum as a function of the concentra-
tion of impurity centers are obtained. By comparing the
results with Monte Carlo simulations, the high preci-

sion of the CPA is shown at low temperatures.

STARTING EQUATIONS

In the description of incoherent migration of excita-
tions over an ensemble of randomly distributed impu-
rity centers, the starting point is a system of balance
equations
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Here, subscripts { and j numerate impurity centers; N is
the number of centers; x; is the coordinate of the center
with number /, which denotes a combination of the Car-
tesian coordinate x; and the transition energy E;
between the ground and excited states here and in the
following; P(x;, x;, 1) is the probability that the excita-
tion is localized on the ith donor at the instant ¢, provided
that initially the jth center was excited; 7, is the intrinsic
lifetime of the excited state (which is assumed here and in
the following to be independent of X,); w(x;, x)) is the rate
of excitation hopping from jth to ith center (in the gen-
eral case, w(x;, x;) # w(x;, x;); and 6 1s the Kronecker
symbol.

For multipole interaction of impurity centers, the
jump rate can be written in the form

R RY
w(x, x)) = %1;(7?9) J(E, E}), 3)

where s = 6, 8, and 10 for dipole—dipole, dipole—qua-
drupole, and quadrupole—quadrupole interaction,
respectively; R = |x; — x;|; and R, is the characteristic
radius of energy transfer. The function J(E;, E;) deter-
mines the dependence of hopping rate on transition
energies in a pair of interacting centers. If these centers
are molecules that have broad spectra, then J(E;, E)) is
expressed in terms of the overlap integral for lumines-
cence and absorption spectra of molecules with transi-
tion energies E; and E, respectively. If these centers are
rare-earth ions whose spectra at low temperatures con-
sist of a narrow zero-phonon line and a weak phonon
wing then [21-28]

J(E, E}) , E>E,

! J

k
lE,-—Ej
()
0,1,2,3,5.

“)
k

In most cases, dependence (4) follows from the
overlap of the zero-phonon line of one center with the
one-phonon wing of another center [28]. The exception

is the modulation mechanism of energy transfer studied
in [21—23] ‘

‘An averaged solution of a system of equatlons ) is
of interest. It is expressed in terms of the Grﬁen func-

tion G(x, x', ), which represents the probability density -

of excitation localized at the point x = {x, E} at the
instant 7, provided that the excitation was at the point
x={x,E}att=0. The Green function is deﬁned as
follows [31: 1

<26(x,x)P(x,, 5 D8(x), x ')>-

G(x, x',1) = ,
o ©)
> 8(x; %)
G(x, x', 0) = 8(x, x").
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Here, 8(x, x") = 8(x — x)6(E — E") is the delta function.
Angular brackets denote an averaging over spatial and
energy distributions of impurity centers. This averaging
consists in integration over coordinates of all centers

with the distribution function g(x;, x,, ..., xy)
<A> = dxldX2...de
J ©
X g(xyy Xa5 ooy XN)A(X), Xqy 20y Xp).

By assuming the spatial distribution of impurity
centers to be homogeneous and uncorrelated with the
distribution over transition energies, we have

N
) = [TeE, %

i=1

g(xls X5 oeey

where V is the system volume, and g(E) is the normal-
ized distribution function of centers over transition
energies.

All quantities measured in experiments (the lumi-
nescence spectrum and decay quantum yield, lumines-
cence anisotropy, diffusion coefficient, etc.) can be
expressed in terms of the Green function [3]. For exam-
ple, the distribution I(E, 1) of excited centers over tran-
sition energies at any given moment ¢ has the form

I(E, 1) = j de.dx' j dE'G(x, x', AKX, (8)
where A(x') is the initial distribution of excited centers
in space and over transition energies after pulsed exci-
tation. In the case of spatially homogeneous excitation,

AG) = S (B), ©)
where g*(E) satisfies the normalization condition
: _[ dEg*(E) = 1.
Upon nonselective excitation,
g*(E) = g(E), (10)

i.e., the function g*(E) coincides with the distribution
of centers over transition energies in the ground state.

The instantaneous luminescence spectrum I, (€, )
is expressed in terms of the distribution function I(E, £)

(11)

Here, Iy(€, E) is the homogeneously broadened lumi-
nescence spectrum of molecules having transition
energy E. The spectrum is assumed to be normalized

j I(e, E)ds = 1. (12)

Lun(e, 1) = [dELy(e, EMI(E, 1).

If the homogeneous width of the spectrum is far
smaller than the inhomogeneous width (rare-earth ions
in crystals and glasses), then one can set in (11)

Iy, E) = &(e - E).
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“hen, from (11), follows

Lu(E, t) = I(E, 1). (13)

In this case, the distribution function /(E, t) corre-
ponds to the instantaneous luminescence spectrum;
herefore, we will further call this function the instanta-
ieous luminescence spectrum.

EQUATIONS OF THE CPA

In deriving the Green function G° for an effective
nedium, we proceed as follows. As in the case of the
“PA, we replace the real disordered system of centers
»y a regular lattice. Because the impurity centers in the
roblem are described not only by spatial coordinates,

out by transition energies as well, the lattice is four-
limensional. The fourth axis of coordinates displays
he transition energy that can take only discrete values

_vith the interval equal to AE. Some points on the fourth
ixis correspond to equal values of energy. The number
f such points (a degree of degeneracy) N(E) is deter-
nined by the distribution function g(E) of centers over
ransition energies

N(E) = Nog(E)AE.

{ere, N, is the total number of points (permissible tran-
;ition energies) on the energy axis.

In this lattice, only nearest neighbors (sites) interact
vith each other. It is assumed that this interaction w,
lepends on time and transition energies of impurity
centers. It is chosen such that condition (1) is valid.

Under these conditions, the Green function G¢ of the
sffective medium must satisfy the equation

d .c 1 ¢
EGij(Ei, E,t) = —T_OGij(Ei, E,t)

t
—z j dt'z NE,)WAE,, E,t—t)G(E, E;, )

0 E, (14)

z '
+ 3, D NE [diw(E;, Byt =1)Gry(Epy Ej 1),
. |

m=1E,

The summation in .(14)b over m is performed over sites
of the three-dimensional lattice that are nearest to the cen-
er i, z being their number (z = 6 for the cubic lattice).

The instantaneous luminescence spectrum I(E, 1) is
related to G by the equation

I(E,1) = N(E)Y > Gy(E, E;, Ng*(E).

i E

(15)

Going to the Laplace representation in equation (14)

éfl(En Ej: p) = jdte_p’G;(Ei: Ejs 1),
0

(16)

we obtain

-~ C 1 ~ C
0

~2Y N(E,)W(Ey, E, p)Gi(E,, E;, p)

E

m

17)

+ 3 S WE Eny PYNE ) Grj(Epy Ej, p).-

m=1E,

To satisfy condition (1), it is necessary to appropri-
ately choose w,. A simple way of finding w, is reported
in [2, 71 and discussed in detail in [3]. In an effective
medium, the rate w, of excitation hopping between a
pair of nearest neighbors (for example, with numbers 1
and 2 and transition energies E; and E,) is replaced by
the true hopping rate w(R, E;, E,). Then, the Green
function G, of such a perturbed medium is averaged
over all possible distributions of the rate w. The func-
tion (G ) must coincide with the Green function of G¢
of the effective medium, because, in the considered
approximation, w,. completely takes into account all
fluctuations of the random quantity w(R, E,, E,). This
results in the equation [3]

<n=< v >=o.
1-G U,

Here, the angular brackets denote averaging over distri-
butions of w, and U is the matrix that has the following
nonzero elements:

Uy =-U,y =
Uy =-Up

(18)

WC(E‘:’ El’ p) _W(R, EZ’ El)’

- 19
wc(El’ E2’ P) - W(R, El: EZ)

i

Equation (18) is equivalent to the system of equations
for the elements of the matrix 7. Under the studied condi-
tions (19), this system reduces to a single equation

(Un/{1 = Uy[G1i(Ey, p) — Gra(E,, By, p)] 20,

~UnlGn(Ey, p) =G (Ep, Ep, p)I}) = 0.

Equations (14), (15), (19), and (20) completely
describe luminescence spectra of disordered media in
the CPA.

Note that, in the absence of inhomogeneous broad-
ening, all sites of the effective lattice become identical,
and, therefore,

Uy =Uyp Gin=0GCn Gn=0Cy (2
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Equation (20) therewith reduces to the well-known
equation in the CPA (3, 7, 8], which is used for calcula-
tion of the effective rate w, of excitation migration.

EFFECTIVE RATE OF MIGRATION
AT LOW TEMPERATURE

As was mentioned in the Introduction, the most
interesting for us is the case of low temperatures. In this
limit, equation (20) can be substantially simplified and
analytically solved.

Indeed, at low temperatures, excitations jump from
centers with higher transition energy to those with
lower energy. The inverse process is unlikely. The
migration of excitations becomes unidirectional.
Therefore, if £, > E,, then

G =0, Uy =0,
and equation (20) takes the form
w.(Ey, Ey, p) —w(R, Ey, E;) = 0.
<1—Gfx(E,, P)[We(Ey, Ey, p) - w(R, Ey, E;)]> (22)

Averaging in (22) is accomplished by means of the
nearest-neighbor distribution function, this neighbor
having one of the allowed transition energies in the
effective medium [3, 6, 7]

p(R)dR = @Rznexp(—i’—‘R%)dR. (23)
Zp 320
Here, n is the concentration of impurity centers, and
2o = 2Ny (The total number of sites in the effective four-

dimensional medium is equal to NyN, where N is the
number of sites in the spatial lattice.).

Subsequent calculations are possible after specifica-
tion of the dependence of the hopping rate w on the dis-
tance between impurity centers. We chose it in the form

of (3) with s = 6 (for dipole—dipole interaction). Then,

equation (22) is reduced to a dimensionless form

) v
1-— Y jdxexf(_xz) =0, (24)
Gu(E,, P)Y;’c(Ezy E,p)y * Y
Guw, . &
Y= b0t p= ot
1-Gnw, ZpToW, (25)
d = ‘%’-‘Rénj”z(Ez, E).
Provided that
wlon <1, y<l, (26)
equation (24) has the solution
Guw, = 57, @7)
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from which, according to (25), follows

-1n

- T -1 =€

wE, E;, = —z4 d(E,, E)[T,G11(E, .
(Ey, Ey, p) 220 (Ey EN[ToGu(Ey, p)] (28)

Note that the function G, (E;, 1) (the diagonal part

of the Green function of the effective medium) means
the probability of localization of excitation on site 1
with the transition energy E, at the instant ¢ if the same
site was initially excited. This function depends only on
the transition energy and time.

In deriving the equation, we assumed that the migra-
tion was unidirectional. For this case, the analytic form

of the function G, (E, £) is known [17-20]

Gii(E, 1) = exp[-1/T— Y(E)Jt/ o),

E
Y(B) = 1, [ dEg(E) "(E, B),

—co

Yo = AT, ¢ = 417:R3n/3.

(29)

In the following, only the values ﬁzc and élcl atp=0

will be required. Then, for low concentrations (¢ <€ 1),
from (29) and (28), we obtain

Gu(E,0) = jdthl(E, 1) = T,
0

, (30)
- 1 172
w(Ey Ey, 0) = 520—%01 (Ey Ey).
This result is exact [17-19, 29].
For high concentrations (¢ > 1),
~c 27
Gu(E, 0)= -,
- Tt 1 172
W(Ey, Ey, 0) = —=——cJ "(E,, E|)Y(E))-

2./220T0

The analogous dependence of the effective hopping

rate w'(E,, E;, 0) on the transition energy (within a

constant factor) can be obtained by means of the meth-
ods of CTRW [17-19] and GAF [29] developed in [30].

THE KINETICS OF LUMINESCENCE
AT LOW TEMPERATURE

The observable quantity is the luminescence spec-
trum. By means of the relation between the Green func-
tion and the kinetics of the luminescence decay (15)
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and replacing the summation over transition energies
in (14) by integration

SINE) = Y Nog(E)AE = No[e(E)dE,
<

L.

we obtain
! E
d 1 :
/(B0 = (B0~ zojdz j dE' g(E")
0 —c

xw (E,E, t-1)I(E, 1) 32)

oo

t
+208(E) j dt'jdEwc(E, E,t-1)I(E,1).
0 E

The limits of integration over energy take into
account that, at low temperatures, the energy transfer
occurs only from the high-energy centers to the low-
energy centers.

Let us introduce the effective rate W(E, E', ) of -

energy migration in the form

W(E, E, t) = zyw.(E, E, 1). (33)
Then, equation (32) can be rewritten as
d ! E
1 '
ZIE 1) = —%;I(E, 1) —jdt JdE'g(E')_
0 —o
xW(E,E t-t'Y(E 1) (34)

4

+ g(E)jdz'jdEW(E, E, t—t"I(E, 1)
0 E

and takes the form of a simple balance equation.

This equation can also be written in another form in
the Laplace presentation, taking into account initial
condition (9)

PI(E, p) - Aog*(®) = 2 1(E, p)
E

- [dEg(EYW (B, E, p)I(E, p)

(35

+8(E) [dEW(E, E, p)I(E, p).
E

However, for the diagonal part of the Green func-
tion, from equation (17), we obtain

~c 1 ~c¢
pGu(E,p)-1= —T—GII(E, p)
0

. E (36)
- jdEg(E)ﬁ/(E, E, p)Gu(E, p).
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It follows from (36) that

E
[aEeEW(E B p) = ——-p-1. @7)
oo Gu(£, p) ©
By substituting (37) into (35), we find
I(E, p) = Aog*(E)Gui(E, p) |
’ (38)

+Gn(E, p)g(E)jdEW(E, E, pI(E, p).

E

In the time representation,

I(E, 1) = Aog*(E) G (E, 1) + §(E) [ dt' G, (B, t— 1)
’ (39)

oo

t
X j dt"jdEW(E, E,t-1I(E,1").

0 E

Thus, we obtained two equivalent equations, (34)
and (39), for calculation of the instantaneous lumines-
cence spectrum (the kinetics of luminescence). The
dependence of the effective rate of migration W on E
and E’ with consideration of (33) is described by equa-
tions (30) and (31) in the regions of low and high con-
centrations of impurity centers, respectively. To find W
in the general case, one needs to solve equation (24),
taking into account explicit form (29) of the function

Glcl (Ey t)

THE STEADY—STATE LUMINESCENCE
SPECTRUM AT LOW TEMPERATURE

Now us consider the simpler case of steady-state
excitation of impurity centers.

The distribution function I(E, t) of excited centers
over transition energies at the instant ¢ upon pulsed
excitation is related to the distribution function I*'(E) of
excited centers upon steady-state excitation as follows:

B = [al(E, 1) = IE, p),_, (40)
0

The steady-state luminescence spectrum I, (E) is
expressed in terms of the distribution function I*(E)

Lun(®) = [1o(e, EYI"(B)dE. (41)

OPTICS AND SPECTROSCOPY Vol. 81 No. 1 1996
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PY(E)/ Agty

Elc

Fig. 1. Steady-state spectra upon nonselective excitation.
Solid lines are calculations in the CPA, and circles are
Monte Carlo simulations k= 3; s = 6; and c =(7) 0, (2) 0.56,
and (3) 5.6.

It follows from (40) that the equation for IF'(E) can
be obtained from (35) and (38) if the Laplace parameter
p in them is set to zero. Then,

- E
I'(E) = Tohog*(E)— [ dEG(E)TW(E, E, 0)I"(E)
| - (42)
+ 2(E) j dET,W(E, E, 0)I"(E),
I'E) = Apg*(E)Gni(E, 0)
43)

+g(E)G11 (E, 0) j dEW(E, E, 0)I(E).
. E -

We shall use equation (43) in specific calculations.
The efféctive rate of migration V~V(E, E', 0) will be
calculated as follows. According to (30), (31), and (33)

at low temperatures and for dlpole—dlpole interaction
of impurity centers,

172

W(E,E, 0) = —-—-J (E, E). (44)
At high concentrations,
W(E,E0) = ——SJ"E,E)YE).  45)

2./2%0
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"Ml
2+

1 1 1

-1 0 1
logc

Fig. 2. Concentration dependence of the first moment (-M;)
of the distribution function IS'(E) upon nonselective excita-
tion. The notations are as in Fig. 1.

Note that these two expressions differ only by a fac-
tor that depends on the transition energy E. Therefore,

instead of solving equation (24) for w, (which appears
to be a rather time-consuming procedure), we approxi-

mate W in the entire range of concentration [taking
into account (44) and (45)] as follows:

W(E,E,0) = ——J 2(E, E)A(E, ¢). (46)

Here, the function A(E, c) depends on E and ¢ and must

- be defined. It is known that

CA(E,¢) =1,

1
—=Y(E),
J2

To calculate A(E, c¢), we shall use equation (37) to
obtain

c €1,

(47)

A(E, c) = c> 1.

To/G11(E, 0) — 1
- . (48)

gcJ'dEg(E)J”"'(E, E)

A(E, c) =

In the case under study (low temperature and dipole—
dipole interaction of impurity centers), the function

G, (E, t) is well-known and described by (29).
Thus, the distribution F'(E) is calculated in the CPA

in the following way. At first, the factor A(E, ¢) is found
from (48) by means of explicit form (29) for the func-



36 -

0.6— L 1‘
logc

Fig. 3. Concentration dependence of the variance of the dis-
tribution function /S(E) upon nonselective excitation. The
notations are as in Fig. 1.

tion Gy, (E, 1). Then, the effective rate of migration

w (E, E, 0) (46) is substituted into equation (43), and
the required distribution I*'(E) is calculated by iteration

procedure for a given concentration ¢ of impurity cen-
ters and specified pump conditions g*(E).

NUMERICAL RESULTS AND CONCLUSIONS

The above procedure of calculations was carried out
for dipole—dipole interaction of impurity centers (3),
where J(E;, E)) was taken in the form (4). '

The distribution g(E) of centers over transition ener-
gies was described by a Gaussian

(E- Eg)2]

20'2

g(E) = (49)

1
ex
Jomo ‘P[

where G is the inhomogeneous width, and E, is the cen-

~ ter of the distribution.

We calculated not oiily the shape of the function
FFY(E), but also its first three moments:

" the center of gravity °
M, = (B)-E)/o, (E) = [EI"B)dE;
the variance
M; = ((E-(E))/d,
(E-(EN") = [(E-(E)'T'(B)E;

(50)

(51
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M3
I ° 6
0.2
0 —11 (l) i logc
-0.2+ °
“\ o
LAY
/ \
L ! \
\ /’ \
~ - O\Q\\

Fig. 4. Concentration dependence of the asymmetry coeffi-
cient of the distribution function ISY(E) upon nonselective
excitation. The notations are as in Fig. 1.

and the asymmetry
M3 = ((E-(E))}/o’,
(E-(BYY) = [(E-(E)'I"(E)dE.

Figures 14 present the results of these calculations

(52)

rye)/ AgTy

Fig. 5. Steady-state spectra upon selective excitation. Solid
lines are the calculations in the CPA, and circles are Monte
Carlo simulations k=3, s = 6, and ¢ = 10.
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(solid lines) for k = 3 in equation (4) upon nonselective
excitation when

gHE) = gE). (53)

For comparison, these figures also present the results
of Monte Carlo simulation (circles) and the self-consistent
diagrammatic GAF method (29) (dashed lines).

In Monte Carlo simulation, an algorithm similar to
that described in [31, 32] was used. The periodic
boundary conditions were used (the medium was
treated as a crystal with 200 impurity centers per unit
cell). Averaging was carried out over 5000 different dis-
tributions of impurity centers.

Note that the third moment M; was calculated by
Monte Carlo method with the least accuracy, because it
is determined by the wings of the distribution function
g(E), where the number of centers is small.

Figure 5 presents the results of calculations of the
distribution I*(E) upon selective excitation of centers
(at the center of the inhomogeneous band):

g*(E) = 8(E-Ey).
The notations are the same.

Note that the results of calculations performed by
CTRW technique [17, 19] coincide within the accuracy of
presentation in the figures with those obtained in the CPA.

Comparison of calculations performed by the CPA
and Monte Carlo methods shows that equations
obtained in this work describe very well (in contract to
equations of [13, 14]) the incoherent migration of exci-
tations in-disordered media at low temperature.

Under the same conditions, the GAF method in the
two-particle self-consistent approximation less well
describes the luminescence spectra (especially the third
moment).

(54)
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