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Abstract—A theory is developed wherein an exact concentration dependence of the luminescence quantum
yield is calculated by Monte Carlo technique for high concentrations of luminescent centers. The results of cal-
culations are compared with similar dependences obtained by different approximate methods.

INTRODUCTION

The energy transfer from excited impurity centers
(atoms, ions, and molecules) to unexcited centers is a
widespread phenomenon [1-5]. The energy transfer
between centers of the same nature is called migration
of excitation, whereas the energy transfer between dif-
ferent centers (from donors to acceptors) is called the
quenching of luminescence of donors. Depending on
the value of the ratio R,/! (where R, is the radius of the
strong quenching of a donor by an acceptor, and / is the
most probable length of the excitation jump between
donors), the quenching is of diffusive (when R/I> 1)
{1, 2, 6] or hopping (R,/I < 1) [6, 7] type. In this work,
we consider the latter case.

Luminescence quenching in the case of a hopping
mechanism was studied by several approximate meth-
ods [8, 9], such as the continuous time random walk
(CTRW), the coherent potential approximation (CPA),

and the self-consistent diagrammatic technique of Gocha- -

nour-Andersen-Fayer (GAF) [8-10] developed in [11].

These methods all give the same dependence of the
luminescence quantum yield 1 of donors on the con-
centration of acceptors for high concentrations of
donors. The region of high concentrations is the most
interesting, because, in this case, one can compare the
exactness of different methods. For the dipole~dipole
interaction between impurity centers,

N/Mo=1-0c,cp, H
47 3 41 3
Cy = ?R;Mnm Cp = ';RDD”D- )

Here, n, is the concentration of acceptors; n,, is the con-
centration of donors; 1, is the luminescence quantum
yield of donors at n, = 0; o is a numerical coefficient:
and Rp, and Ry, are Forster radii for energy transfer
from a donor to an acceptor and from a donor to a
donor, respectively. Equation (1) is valid for cp > 1,
¢x<<1,and cciep < 1.

The rates of energy transfer wp, and up, for the
dipole—dipole interaction are known to be determined
by the expressions

6 6

R R
Wpp = _1.(__1?.2) , Upy = l(.ﬂé) ) (3)
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where 1, is the excited state lifetime for donors in the
absence of acceptors, and r is the distance between the
centers.

The CTRW method (taking into account the Huber
correction) gives the o equal to 1.11 [8, 9], and the CPA
and GAF methods give 1.97 and 1.66, respectively [8, 9].
It is interesting to compare the value of o calculated by
different approximate methods with the exact value,
which can be obtained by Monte Carlo simulation.

Straightforward calculations are performed as fol-
lows. A fixed (sufficiently large) number of donors (V)
and acceptors (N,) is distributed randomly in a cube.
The volume V of the cube depends on the concentration
of donors:

V=Npy/np. @)

Periodic boundary conditions are used. The quantum
yield of luminescence of donors is calculated for a
specified distribution of impurity centers by Monte
Carlo technique. This quantum yield is then averaged
over different distributions. The dependences of quan-
tum yield on concentrations of donors and acceptors
are plotted. If these dependences are described by (1),
the coefficient o is calculated.

Such an approach was used in [12] and gave unsat-
isfactory results, because to obtain a sufficiently correct
dependence (1), it was necessary to consider distribu-
tions with a very great number of donors and acceptors.

In this work, another approach is proposed for cal-
culating dependence (1) by Monte Carlo simulation.
This approach consists in absolutely excluding the
acceptors. Within this approach, it is necessary to cal-
culate the value of (1,/ny)"? for each distribution of
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donor centers only, where 1, is the quantum yield of the
initially excited center. Then, this value must be aver-
aged over many distributions. The desired dependence
has the form

T -1/2
N/Mo = 1-5e,{[ni/Mol ). (5)
The angular brackets in (5) denote averaging over
different distributions of donor centers.

Let us now turn to the derivation of equation (5).

THEORY

Consider a medium where donors and acceptors are
distributed randomly. The concentration n, of accep-
tors 1s low, and the concentration ny, of donors is high.
The mean volume V, per acceptor is equal to:

VA = I/I”IA. (6)
This volume contains the following number of
donors:

ND:nDVAan/nA>1. (7)

Let us break the medium into cells, each of them
containing one acceptor. The mean volume of such a
cell is equal to V,. Let us select one of them and number
all the donors within it.

Let P,(r) be the probability that the excitation is
localized on the kth donor at the instant . This proba-
bility obeys the balance equation

d

P = TP~ PO+ Pl Pt = Py(o)

()
P (0) = §,,.

Here, u, is the rate of energy transfer from the donor k
to an acceptor (it is assumed that the acceptor is placed
at the origin of coordinates), wy; is the rate of hopping
of excitation from the donor i to the donor k (wy; = w;,),
and §,,, is the Kronecker symbol.

In the Laplace representation

oo

Pi(p) = j e "' P 1)dt, ©)
0
equation (8) takes the form
(P 2 JPup) =81 4 1P(p)
0
(10)

+ > wul Pu(p) = Pi(p)] = 0.
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Let us introduce the Green function ékm , which sat-
isfies the equation

1 ~
(}7 + ,‘E;)Gkn(p) -8,
(11)
+ 2wl Gin(p) = Gin(p)] = 0.

1

Comparison of (10) and (11) shows that G, (¢) is the
probability that excitation is localized on the kth donor at
the instant ¢ and that the nth donor was excited at r = 0.

Note that equation (11) describes only migration of
excitations; the quenching by acceptors is disregarded.

The function G possesses the obvious properties of

> Gu(p) = 1/(p+1/1),
k

Gin(p) = Gul(p) (k#n).

(12)

It is easy to show that the solution of equation (10)
can be written, using the Green function, as

Pi(p) = Y [8,1m =, Pa(p)IGinlp).  (13)

Now, we take into account that we are interested in
the hopping mechanism of quenching. This implies
that, in the cell under consideration, the rate u, is non-
zero only for the donor that is nearest to the acceptor.
Let us designate this donor by the index 1. Then, pro-
vided that

U, =u;d,,, (14)
from (13), we obtain that
Pi(p) = Gin(p) =1, Pr(P)Gur(p). (15)
For k = 1, it follows from (15) that
Pi(p) = Gin(p)/[1+u,Gu(p)). (16)

The probability that the excitation is still localized
in the donor subsystem (the mth donor was initially

excited) is determined by the sum of all P Taking into
account (12), (15) and (16), this sum is written as

_ uléi:n(ﬁ) . (17)
+1u,Gu(p)
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Let us average this expression over the position of
the initially excited donor (over the index m). Taking
into account (12), this gives

= 1

X[I U Ty }
1+ 14,5?11(;))ND(TOP+ nJ

It is necessary now to average expression (18) over
the position of the acceptor with respect to donor 1,
using the nearest neighbor distribution function

(18)

p(r)dr = nD47trZexp(—%7—tr3nD)dr. (19)

Taking into account the dipole—dipole mechanism
of interaction (3) between donors and acceptors, one
can argue that the second term in brackets will be non-
zero for r < Rp,. Also, 1f

(20)

then, upon averaging in (18), using function (19), the
latter can be replaced by

nDRf)A < 1,

pdr = 4nrinydr, 21

and the integration area over dr can be extended to
infinity.

As a result, taking into account (7), we obtain

DRRINEE

1
plo+ 1|

(22)

T - -1/2
X131 ”’?:CA[GH(P)/TO]

Let us now average this expression over all possible
distributions of donor centers. Finally, we obtain

[l

: - -1/
*{1 ~SeattGnt/ml o 1}'

Within the time representation; the function
obtained is the kinetics I(f) of luminescence decay of
donors with I(0) = 1.

It is well-known [9] that the quantum yield 1 and
I(?) are related as

1 I -
/g = - [1(0di = Z-1(p) (24)
0

p=0
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Fig. 1. The region of high concentrations. Circles: Monte
Carlo calculation; straight line: the least-squares approxi-
mation.
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Fig. 2. The region of low concentrations. Notations are as in
Fig. 1.

From (24), (23), and (2), we obtain

T - 172
/My = 1-2e G0/ %] ). (29)

It follows from equation (11) that the function G,,(?)
is the probability that excitation is localized on the ini-
tially excited donor for a given distribution of donors.
Therefore, the quantity

- .
M/, = G = ZG(O) 26)
0

is the quantum yield of luminescence of the initially
excited donor. Formula (5) follows from equations (26)
and (25).

Note the two following circumstances. First, at a

low concentration of donors (np, — 0), e (O)y=15and -
equation (25) reproduce the well-known result of the
Forster theory [1, 2, 9] for ¢, < 1. Second, in view of
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approximations (20) and (21), used in derivation of
equation (25), the latter is valid as long as the second
term in the right side of (25) is smaller than unity.

RESULTS OF CALCULATIONS

The algorithm of calculation of the quantum yield of
luminescence of initially excited centers by Monte
Carlo technique for a fixed distribution of donors was
similar to that used in [13-16]. After these simulations,

the value of ([ G1; (0)/1,]7'7) was calculated.

Unlike [16], we did not introduce the smallest dis-
tance between donors, because, first, this would result
in the exponential decay of G;,(r) at very short times,
and, second, in the CTRW, CPA, and GAF methods, the
continuum approximation is used (donors and acceptors
are considered to be point particles). We also did not intro-
duce the cutoff distance, beginning from which the system
of donors can be considered as a continuous medium of
acceptors for the initially excited donor.

We performed final calculations for the following
values of parameters. The number of donors for each
distribution was taken to be 1000. Periodic boundary
conditions were used. To calculate Gy; (0), the center
with number 1 was excited 400 times for each distribu-
tion. Averaging was done over 400 distributions.

The results of calculations are presented in Fig. 1.

One can see that, at ¢, > 1, the function ([ Gn 0) /112
is well-approximated by the linear dependence

(1G1(0)/1,) ) = 0.83+0.95¢,, @7

From the slope of this dependence, we determined
the coefficient o entering (1):

o =1.47. (28)
This value is closest to that obtained by the GAF
method.

To check the method proposed in this work, we
accomplished similar calculations in the case of low
concentrations of donors (cp <0.1). The results are pre-
sented in Fig. 2. The function ([ G1; (0)/7,]""?) is again
described by the linear dependence

([Gu(0) /1] ) = 14071¢cy, (29)

but with a lower slope. After substitution of (29) into (25),
we find
s
n/mMg = I—ECA—LIZCACD. (30)
Equation (30) reproduces an exact result of the GAF

theory in the three-particle self-consistent approximation
(9] for the hopping mechanism of quenching (R, < Rpp).
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CONCLUSION

We obtained, using the method proposed in this
work, the exact concentration dependence of the lumi-
nescence quantum yield [equations (1) and (28)] for
high concentrations of donors and the hopping mecha-
nism of luminescence quenching. The conclusion is
made that the GAF method allows one to calculate
most precisely the luminescence quantum yield at high
concentrations of impurity centers in three-dimensional
media compared to other analytic methods.
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