Stochastic theory of molecular radiative transport
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The radiative transport (or radiative migration) of electronic excitation energy in a molecular
ensemble is analyzed from a stochastic point of view. This approach yields results considerably
more general than those of previous treatments, where successive hops are (implicitly) assumed to
be uncorrelated, while they constitute in fact a Markov process. The time evolution of the
fluorescence intensity emitted by the molecular ensemble, in response to excitation by an external
beam of linearly polarized and essentially monochromatic light is obtained. In contrast to the
previous treatments, only known parameters are required. The time evolution of the fluorescence
anisotropy is also obtained for the first time. © 1995 American Institute of Physics.

I. INTRODUCTION

In assemblies of like atoms or molecules the photons
emitted by electronically excited species may be reabsorbed
and re-emitted several times before they leave the sample.
This phenomenon is known as radiation imprisonment, ra-
diative migration, or radiative transport. Its importance de-

‘ pends on many factors: extent of spectral overlap between
absorption and emission, fluorescence quantum yield, con-
centration, cell size and shape, geometry of detection, etc.
When present, this process affects the fluorescence decays
and spectra, as well as the fluorescence anisotropy. Follow-
ing the pioneering works of Birks' and Kilin and Rozman,?
Martinho, Macanita, and Berberan-Santos>® developed a
generalized model, that was successfully applied to the
analysis of experimental data, and extended to include the
possibility of nonradiative transfer.>® This model predicted a
nonexponential and emission wavelength-dependent decay at
high concentrations, as experimentally found.>® However,
the coefficients of the theoretical decay law contained un-
known parameters, whose theoretical evaluation was only
possible through stochastic simulation.® While some of
these coefficients could be obtained from experiment, the
predictive character of the approach was for the same reason
limited. Furthermore, the Markovian nature of the hopping
of excitation was not fully taken into account, as will be
shown. In this work, a complete stochastic theory of radia-
tive transport is presented. It represents a significant im-
provement over previous ‘treatments, because: (i) the Mar-
kovian nature of the hopping process is now taken into
account; (ii) there are no unknown parameters. Therefore, it
becomes for the first time possible to accurately predict the
effect of radiative migration on the fluorescence intensity and
anisotropy decays, and on the fluorescence spectrum, under
given conditions.

In Sec. II, we start by presenting model-independent
equations for the intensity dependent quantities (fluorescence
decay and fluorescence spectrum) (IT A). We then briefly re-
view the two existing models for radiative transport, namely
Birks’s modei (Il B) and generalized Birks’s model (II C).
The stochastic theory of radiative transport is then developed
(D). In Sec. II E, the angular dependence of the observables
is presented. In Sec. I F we derive expressions for time-
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dependent and steady-state anisotropies. Finally, in Sec. III
the equations derived are applied to two simple geometries.

il. THEORY

Consider a given volume, of convex but otherwise arbi-
trary shape, containing a macroscopically uniform distribu-
tion of identical molecules. OQur aim will be to determine the
time evolution of the intensity and polarization of the fluo-
rescence emitted by the molecular ensemble, in response to
excitation by an external beam of linearly polarized and es-
sentially monochromatic light. The duration of the excitation
of the sample may range from a few femtoseconds to several
minutes. In the first case the time-dependent fluorescence
emitted is called the & response or decay law, while in the
second case (continuous irradiation) it is called the steady-
state (photostationary-state) intensity. If the excitation beam
intensity is low, that is, nonsaturating, the & response can be
used to obtain the response to any kind of time dependence
for the excitation, including the photostationary state. We
assume this to be valid, and concentrate our analysis on the
calculation of the &response, from which the photostationary
state can then be derived.

The fluorescence emitted by the molecular ensemble is
in general anisotropic, regarding both intensity and time de-
pendence. Besides being dependent on the directions of ex-
citation and detection, the & response is a function of mo-
lecular spectroscopic properties: fluorescence lifetime and
fluorescence quantum yield, emission and absorption spectra.
In this way, it depends on the excitation and emission wave-
lengths, on the molecular concentration and on the sample
size and shape. The optics at the boundaries (refraction, in-

ternal reflection) also play a role.

A. General equations for intensity dependent
quantities

The (unnormalized) ensemble decay law (for all direc-
tions, that is, 477) can be written as (for nonspherical sam-
ples, the excitation direction should also be specified; this is
not done explicitly in order not to overload the notation)

p()\exc’)\em’t)= Zl pn()\exc’)\em’t): (1)
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where p(Aexc sAem-2) is the probability that a photon of wave-
length A, will leave the sample between ¢ and ¢+ dt, given
that a photon of wavelength A.,. was absorbed at time #=0,
and p, Ay Aem»?) is the probability that a photon of wave-
length \,,, will leave the sample between ¢ and ¢+dt after
exactly n absorption-emission events, given that a photon of
wavelength A, was absorbed at time t=0. This last prob-
ability can be written as .

Pr(NexcsNem>) =Pu(Nexe s Nem) Pnl2), )

where p,(Aexe ;Aem) 18 the probability that a photon leaves the
sample after exactly n absorption-emission events and has
wavelength A, given that a photon of wavelength A, was
absorbed; and p,(t) is the probability that a nth generation
molecule will emit a photon between ¢ and ¢+dt, given that
it will emit one. By assuming that the propagation time of
re-emitted photons is negligible, this probability (normalized
density function) is given by (Appendix A)

1 (t/mg)" ! t 3
Pn(t)_ o (n_1)| €xXp T s ( )
where 7, is the molecular lifetime.

On the other hand, p,(\...\em) can be written as

PrNexc ’)\em)=p—n()\exc)Fn()‘exc’)‘em)’ “)

where p,(A.) is the average probability that a nth genera-
tion photon will be emitted and will leave the sample,
given that a photon of wavelength A, was absorbed, and
F,(Aexc-Nem) 1s the normalized emission spectrum for the
ensemble of nth generation excited molecules, so that
JOF (Moo Mem)dA o= 1. This spectrum will in general differ
from the molecular one, Fy(X,y), because the probability of
absorption by the medium is a function of the wavelength;
also, it will be a function of n because the spatial distribution
of each generation of excited molecules, hence that of path-
lengths, will also be a function of ». We further assume that
the molecular fluorescence spectrum, Fy(\.y), is the same
for all generations and is independent of the excitation
wavelength.>® In this way, Eq. (1) can be rewritten has

o

p()\exc’)\em’t)=nzl p-n()\exc)Fn()\exc ’)\em)pn(t)- (5)

The normalized time-dependent emission spectrum
F(Nexe Aem o) is therefore given by
z:= lﬁn()\exc)Fn()\exc ’ )\em)pn(t)
2:=11;n()\¢xc)pn(t) ’

and the normalized steady-state emission spectrum is given
by

F()‘exc’)\em’t)z (6)

2:= lﬁn()‘exc)Fn()\exc ’)\em)
2:10= lﬁn()\exc)

Finally, the macroscopic fluorescence quantum yield is

F()‘exc Aem) = (7)

¢(kexc)=j0 J‘() p()\‘exc’xem7t)dt d)\em:nZI I;n()\exc)'
®
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We now consider the calculation of these quantities
within some models.

B. Birks’s model

In this model,! it is assumed that
ﬁnzannl(l_&)d)n’ (9)

where « is the average absorption probability of a photon,
independent of generation and excitation wavelength, and @,
is the molecular quantum yield; it is also assumed that, for
all n,

1—a(Aey)

Fn()\em)= _I_T FO()\em)- (10)

Substitution of Egs. (9)-(10) into Eq. (5) yields
P(Nem-1) =k Fo(Nem)[1— o Nem) Jexp(—1/7), (11)
where k, is the radiative rate constant and the effective life-

time is
To

- (12)

T

From Egs. (8) and (9), the macroscopic quantum yield is
given by

(1-a)®,
=T, (13)

C. Generalized Birks’s model

In this model,® it is acknowledged that the absorption
probabilities are a function of n, i.e., of the generation,!©2~4
and also function of the excitation wavelength,

n—1
ﬁn()‘exc) = ];.l; C-li()\exc)[ 1- C_Zn()\exc)]q)g (14)
hence
1= a,(Nexcs e
Fn()\exw)\em): —ﬂ—lnl FO()\em)- (15)

1- C_ln()\exc)
In this way, instead of Eq. (11) one obtains for the decay law

FIG. 1. Two concretizations of a sequence involving two consecutive
absorption-emission events. Although the hop (1—2) had the same length in
both cases, the absorption of the excitation occurred nearer to the boundary
in case b. Therefore, in case a, the escape probability is lower than in case
b. This shows that successive hops cannot be assumed to be uncorrelated.
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o

P(NexcsNemst) =Kk Fo(Nem)exp(—t/7p) 21 ap—1{Nexc)
n=

(k)"

[ n()\exc’ em)] ( 1)‘ ’ (16)

where
n—1

an--l()\exc)= ]._Ii &i()‘*éxc)- (17)
=
The decay law is now nonexponential but an average decay
time can be defined
<T()\exc’)‘em)>
2n lan l()‘exc)[l an()‘exca em)]q)
2n—lan I(chc)[l n()\exc’ em)]q)" rro
=<n()\exc’)\em)>70' ) (18)

Note that all the a; (i>1) are parameters that cannot be
computed within the model, because they depend on the un-

]
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known spatial distribution functions of each generation, i)
and these can only be obtained by stochastic simulation.>®

D. A stochastic treatment

An approximation common to both previous models is
that the successive reabsorption processes are independent.
This is, however, incorrect: As a simple example, consider
two concretizations of a two-step process: absorption of an
excitation photon, followed by emission of a second photon
(possibly of another wavelength), reabsorption, reemission,
and finally escape of a third photon (Fig. 1). In case a, the
escape probability, corresponding to the last step, is clearly
smaller than in case b; in this way, the reabsorption and
escape probabilities of successive steps are correlated. It then
becomes more convenient to go back to Egs. (1) and (2),

©

p(xexc,xem,t)=n§1 PN exesNem) (), (19

the probability p,(Aexc M) being written as

pn()\exc’)‘em)z-q)g.f J‘ f “‘j J-gn(rler’"-’rn’xl’)\2’“")\n—ll)\exc)FO()\em)

X[l-— jf(rlr,,,)\em)dr}drl dry--+dr, dNy dN\y - dN,—4, (20)

where the function g,(r;,F2,....Ty 5 Aj Ao ,eee

N —1|Nexc) is the probability (density function) of a given tra_]ectory with n steps.

Given the Markovian nature of the process one has, successively

g,,(l'l % URTIIT o ’)\19)‘2"“’ n—-ll}‘exc)

=F0()\n—1)f(rn|rn—1 ’)\n—l)gn—l(rl N LR

S TYONNISYY ¢ M} SEPES WHIPY) Y . NPY | /¢ MEPY| SEPYD WHIPY T SEPY( I SO0
SEEEECD Y CNNIRYT 6 M) SEPED VPS¢ WY ¢ SERYS MEPY WP

so that Eq. (20) can be rewritten as

pn()\exc s)\em) = ‘Dgf f(rll)\exc)drl

,l',,_l,)\l,}\z,...,

)\n—ZI)\exc) (21)
2 v)\l s)\27"-7)\n—3l)‘exc)
"Fo(M)f(rafry , M) X £y Nexe)

XJ' Fo()\1)ff(l‘2|l'1,)\1)dr2 d)\l"'f FO()\n—l)ff(rn]rn—l,)\n—l)drn ANy 1 X Fo(Nem)

X{l—ff(rlr,,,)\em)dr},

where f(r;jr;—1,\;—1) is the probability (density function)
that a photon of wavelength \;_; and emitted at r; _; will be
reabsorbed at r;, and is given by

1
frilr_ N y)= 7 €(\;_1)C
l'i—1|

4’7T‘l'i

XIn 10 10~ Ri-1)Chri=ri—y] (23)

and f(r;|\), which is the probability of absorption at r; of
the excitation photon, is given by

(22)

€(Aeye)C In 10 10~ PhesdCr

Jg™€(Aexe)C In 10 107 RexdCrs g’
(24)

f(rll)‘exc)=

where €(\) is the molar absorption coefficient, C is the molar
concentration, and r,, s the maximum pathlength along the
excitation direction. The integration in wavelength runs in
principle from zero to infinity, but the effective maximum
wavelength is the absorption cutoff A, beyond which the
probability of absorption is zero. Equation (23) is also based
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FIG. 2. Schematic representation of the two common geometries of obser-
vation, front-face (a) and right-angle (b). E—excitation beam; D—detector.
Note that the intensity of the light emitted by the sample is in general angle
dependent.

on the assumption of isotropic emission, which implies sig-
nificant molecular rotation during the lifetime.

The above derivation shows that the escape probabilities
are not, in general, independent (the radiative transport is a
Markov process) and therefore the factorization postulated
for the previous models is only approximate. There is, how-
ever, a case where Eq. (22) reduces to the simple Birks
model: If the excitation beam goes well inside the sample,
and the optical density in the absorption-emission overlap
region is very high, it may be assumed that, irrespective of
the generation, all the emitted photons are either reabsorbed
(A<\,) or exit the sample (A>X\ ), and Eq. (22) reduces to

Polhew) =0 [ FolM)[1=HOG 1]

Xd,)\l"‘(bof FoAp—D[1=H(N\,—1—X)]

) Xd)\n—lxq)OFO()\em)H()\-em_)\c)s (25)
where H(x) is the Heaviside function. By writing

o )‘c
&zf Fo()\)[1~H()\—)\C)]d)\=f Fo(M)dN.  (26)
] 0

Equation (25) leads to a single exponential decay (for
A>),), Eq. (11), whose lifetime is given by Eq. (12). This
particular case reduces to the Birks one because the hops are
uncorrelated. '

E. Angular dependence

The fluorescence is usualily collected at a certain angle
from the excitation beam, the front-face and right-angle ge-
ometries (Fig. 2) being the two most common. The decay
law derived thus far [Eqgs. (19) and (22)—(24)], corresponds
to the measurement with an ideal integrating sphere. The
experimental decay collected at a certain angle (within a nar-
row cone) may differ significantly from the orientationally

integrated or ensemble decay. Indeed, the probability of -

emission for a given direction (), o7, is given by

-3

PN exesNem 1) = 21 PN exe s Nem) Palt), @7)

where

3025
P (MexcoNem) = f F(r1hex)dr,

Xf fFo(Al)f(rzlrl,Al)drz 79 SRR N

$ [ Fe el M,

1
Xd)\n—lh—,n—_ q)OFO()\em)

7 max(€2)
X I—Jo f(rlrn,)\em)dr (28)
and
FrIrn Aem) = €A e) C In 10 10~ em)C7, (29)
so that
P()‘exc’)\em’t)=f PQ()\exc’)\emvt)dQ- (30)

F. Time-dependent and steady-state anisotropies

For the purposes of computing the effect of radiative
transport on fluorescence anisotropy we consider only mea-
surements made in directions contained in the horizontal
plane (denoted L, and including the front-face and right-
angle geometries), for which the anisotropy of fluorescence
takes the highest value. We further suppose that the molecu-
lar rotational motion is negligible during the lifetime and that
the exciting photons carry vertical polarization.

We start with the calculation of the depolarization due to
the radiative transfer of the electronic excitation energy. If
r1(\exc) s the anisotropy of fluorescence of directly excited
molecules (the so-called fundamental anisotropy), then the
anisotropy of second generation molecules indirectly excited
by reabsorption will be

r2()\exc)=ﬂrl()\exc)’ (31)

where S is the depolarization factor (8<1). In contrast to
nonradiative transport, the probability of return of the exci-
tation to the original molecule is negligible, and therefore the
anisotropy of fluorescence of molecules belonging to the nth
generation is obtained by repeated application of Eq. (31),

rn()\exc)=ﬁn_1rl()\exc)' (32)

Two different values of the depolarization factor 3 exist

“in the literature. Zewail ef al.’ obtain 8=0.16, while An-

drews and Juzeliunas® obtain B=0.28. Calculations by a
third method (Appendix B) confirm that the last value is the
correct one. This value may be compared to that of the non-
radiative dipole—dipole transfer mechanism, which is
B=0.04 (strictly speaking, in the nonradiative mechanism
this factor refers to the zero-time acceptor anisotropy7). The
polarization retained after one transfer is thus seven times
greater for the radiative case, precluding the common ap-
proximation in nonradiative transport of neglecting the con-
tribution of higher order generations.
The time-dependent anisotropy is given by
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2:10= lpt-;-()‘exc ’)\em)pn(t)ﬁn_l

r()\exw)\em’t):rl()‘exc) zw—lpl()\exc Nem) P (1)

and has the interesting feature of being a function of the
radiative decay constant only, and not of the whole fluores-
cence lifetime. The steady-state anisotropy is

2:= lpﬁ()‘exc ’)\em)Bn_l
2b:= lpt()\exc ’)‘em)

It is interesting to compute these quantities within the simple
Birks’s model. The resuits are

r()\exc’t)zrl()\exc)exp[__&(I_B)krt]’ (35)

i:()\exc s )\em) = rl()\ex(;) (34)

)= T3 55, M1 69

It should be remarked that the p: (Aexc ,Aem) Of Egs. (33) and
(34) must be computed with a reabsorption probability
whose orientational dependence is that of a radiating electric
dipole, and not that of an isotropic emitter, Eq. (23), because

FIG. 3. Unidimensional geometry. The excitation (E) and detection (D) are
at the same point. ‘

lil. SIMPLE GEOMETRIES

In order to compute some of the quantities derived, two
simple geometries are now discussed.

A. Semi-infinite line

This is the simplest unidimensional problem. Consider
Fig. 3. For a photon emitted at x, with wavelength A, the
escape probability is (1/2)10~*®ew)C* and therefore

p I(Aexc 7)\em is

P10 hen) = | s C 10 10 1070
/.0

X DoF(Aem) 3 107 em)Cx gy

o s . . . (I)OFO()\em)
it is now assumed that molecular rotation is frozen during the = T e Ve(x ; “(37)
lifetime. However, the results are expected not to greatly (1+ e(hem)/ €(Aexc)
differ. In the same way,
1
o oo w ]
pz(xm,xem)=ﬁ) fo €(Aexe)C In 10 10—f<*exc>cﬁq>0[ fo 5 €A)Cn 10 10~ < MCe—xlF(\) g\
X DoFo(Nem) § 107 PemCx2 g dx,
PGFo(Nem) f | |
= | Fy(A + d\, 38
4(1+ e(}‘em)) 0 o(\) 14 €(Nem) €(Nexc) ‘ (38)
€(Nexc) e(\) e(N)
o hy = ZoFCken) 1 f f Fo(A)Fo(A2)dh; dhs
P3iterc tem 8 (1+ e o) €0hexd) Jo Jo (1T e(hg)/ e(X7))
1 1 1
X - + +
(1 +E()‘-exc)/€()\2)) (1+€()‘cm)/5()\2)) (1+E()‘em)/6()\exc))

1

# [ Fo(M)Fo(Ap)dNy d\y 1 .
xf() fO [(I—E(xem)/e()\Z)) * (1+E()\em)/5()\2))

(1+ 5()\cm)/€()‘1))
Fo(A)Fo(Ng)dNy dh,

1 1

"“L fo (6(N2) — €N ) €N ex) (1 + €A x)/ €(N2))

Higher order terms can be similarly computed, but a general
expression could not be obtained: An interesting result is,
however, apparent: The probabilities (and hence the decay
law) are independent of concentration, this being the result
of a compensation of two opposite effects. Indeed, the higher
the concentration, the less the penetration of the cxcitation
beam, which exactly compensates for the more important
imprisonment of the emitted radiation. This effect holds ex-

(1+6(}\exc)/€()\1))+ (1+€()\2)/€()\1)):” (39)

actly for semi-infinite media (in one or three dimensions, as
shown below) and when the spatial distribution of the prima-
rily excited molecules follows from the attenuation of the
monochromatic excitation beam, according to Beer’s law.
When a single wavelength A is postulated for absorption and
emission, the previous equations further simplify

P
Pilhor)=7" (40)
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FIG. 4. Semi-infinite volume. The excitation beam (E) is normal to the
boundary; the detector (D) collects all escaping photons.

@3
P2(Ao,Ng)= 3 (41)

3
0

p3(Xo,No)= 64 '(42)
If the distribution of the primary generation of molecules is
not a consequence of Beer’s law, then a concentration effect
appears. For instance, if first generation molecules always
occur at a given distance x, from the boundary (this situation
may correspond to an idealization of the right angle geom-

etry), Eq. (37) is replaced by

w (g
P Ohexe o) = [ B—20) 52 1070 i
0

@
=~ 107 <Cen)Co 43)

and the dependence on the concentration exists. This depen-
dence also exists whenever the medium cannot be treated as
semi-infinite, that is, if it is of finite length.

B. Semi-infinite volume

Consider Fig. 4. This problem is amenable to a one-
dimensional description because the only relevant coordinate
is the distance from the boundary, x. The probability of ab-
sorption at x; of a photon emitted at x;_, is obtained by
integration of Eq. (23) over the yz plane that contains x;

fw Jm e(M)CIn 10 10~ €MClr;—r; ]
f(xi|Xi_1,)\)_ - ) —w 47T|l'i_1‘i—1|2

e e~ #OWNxi=x;_lu

1
Xdy; dz=5 fl BON) ————du,

(44)

where p(A\)=€e(\) C In 10. On the other hand, and neglecting
the possibility of internal reflection at the boundary, the es-
cape probability for a photon emitted at x is

1 x 1 [ g #(\)xu
—- f f(qu,)\em)du= = ——du. (45)
2 0 2 1 U

Inserting these probabilities into Eq. (22) one obtains
€(Ne) ln 1+ €(Aexe) '
e()\exc) E()\em)

(46)

Considering that the excitation occurs at a distance x, from
the interface, one obtains instead

1—

Dy
pl()\exc ’)\em)= _2_ FO()‘em)

3027

)‘em)xou

¢0 o e_”-(
pl()\em)'__ _2— FO()\em) fl _"‘uz_"‘ du 47

more complicated expressions being obtained for higher
terms. For the front-face geometry, the -coefficients do not
depend again on the concentration, as found before for the
semi-infinite line.

IV. DISCUSSION AND CONCLUSIONS

A stochastic theory of molecular radiative transport was
presented. Contrary to previous models, it takes into account
the Markovian nature of the excitation hopping process, and
leads to expressions without unknown parameters. It was
thus possible to obtain, for the first time, full expressions for
the intensity and the anisotropy of fluorescence. While the
equations derived are quite general and yield in some cases
analytical expressions, they more often lead to complicated
expressions, as shown for two simple geometries (semi-
infinite line and semi-infinite volume). Given the probabilis-
tic nature of the underlying physical phenomenon (radiative
transport), Monte Carlo simulations built upon the basic
theoretical equations are a promising alternative to a full nu-
merical:calculation. Work in this direction is under progress.
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APPENDIX A: DERIVATION OF EQ. (3)

In order to compute p,(t), that is, the probability that a
nth generation molecule will emit a photon between ¢ and
t+dt, given that it will emit one between r=0 and t=00, it
suffices to consider that the instant of emission for a given
realization of a n-step process is (neglecting at first the

. propagation time spent by the photons between molecules)

t=Zl At;, (A1)

where At; is the waiting time for the ith excited molecule
involved in the sequence. Now the A¢; are independent ran-

- dom variables with the common density function

An= 1 At A2
g(Ar)= 0 P\ T ) (A2)
Because of the independence of the A¢;, the random variable
t has a density function given by the repeated convolution of
Eq. (A2),

11 t\m! ot
Pn(t)=g®g®'“®g=7—om Py B g €

X
" (A3)
which is Eq. (3).
The incorporation of the effect of the time of propaga-
tion can be done by adding a final term to the right-hand side
of Eq. (A1),
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FIG. 5. Schematic representation of donor (D) and acceptor (A) relevant
parameters. g, and g, are the donor and acceptor transition moments. d and
n are the unit vectors along the transition moment of the donor and along the
direction joining D and A. E; is the electric field of the donor at the accep-
tor.

t—z At, +E |r,+1 = At;+At,

i=1 i=1

(A4)

where c is the speed of light in the medium and r, corre-
sponds to the point of entrance of the excitation beam (this
entrance occurring at time zero). That last term has the den-
sity function 8(#— At) and so by performing its convolution
with Eq. (A3).one gets p,(t—At) for t>At, and 0 for <A,
that is, the expected retardation effect. The incorporation of
this effect slightly complicates the theoretical treatment be-
cause the space and time dependence become indissociable,
and the factorization carried out in Eq. (19) is no longer
possible. Instead, a generalization of Eq. (22) must be writ-
ten, incorporating p,(¢z— At). Consideration of the propaga-
tion time is however unnecessary for samples of a few cen-
timeters, if the intrinsic decay times are of at least some
nanoseconds. In this case they will be two or more orders of
magnitude higher than the propagation times of individual
hops (1/c~3 ps/mm), and the final term in Eq. (A4) can be
neglected.

APPENDIX B: CALCULATION OF THE
DEPOLARIZATION FACTOR

Consider Fig. 5. The depolarization factor 8 is given by®

3{cos® w)—1

==z
where w is the angle formed by the transition moments of the
donor and of the acceptor, and corresponds to the rotation of
the transition dipole when the transfer occurs. This rotation
can be thought to occur in two steps: First, the donor’s tran-
sition moment rotates by an angle y, becoming coincident
with the direction of the electric field of the donor at the
acceptor; it then rotates again by an angle 8 so as to coincide
with the direction of the acceptor’s transition moment. Be-
cause these two angles are independent (x depends only on
the orientation of the donor; 8 depends only on the orienta-
tion of the acceptor; and donor and acceptor have uncorre-
lated orientations) Eq. (B1) can be rewritten as a product of
two Soleillet factors:®

(B1)
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3(cos? w)—1 3{cos? x)—1 3(cos? §)—1
B 2 h 2 X 2

(B2)

The electric field of the donor at the acceptor is, for the
radiative Zone,

E,=C[(n-d)n—d]=C(cos ¢ n—d), (B3)

C being a distance dependent- factor. Now the absorption
probability is proportional to

|Ez- ol 2| Eg|? cos? @acsin? o cos® 6. (B4)
Because the orientational distribution function for the donor
is

F)=sin ¢, we[o,g} (B5)

and given Eq. (B4), the ¢ orientational distribution for pairs
with excited acceptors will be

3
s(h)=3 sin® 4. (B6)
On the other hand,
d'Ed .
cos x= i = —sin ¢ B7)
hence
w2 4
(oo x)y=(sin? gy= [ s yg(w)av=5. (@9

In the same way, the 6 distribution function for pairs with
excited acceptors will be

g(6)=3cos® 9 sin @ (B9)
and therefore
(cos? @)= J'ﬂ cos? gg(0)do=2. (B10)
0

Finally, from Eqs. (B2), (B8), and (B10), the depolarization

factor is

(B11)
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