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A new method for writing kinetic equations directly in
the integrated form is presented. This method applies
to any species that is consumed solely through first
order steps, regardless of the complexity of " its
formation pathways.

INTRODUCTION

Macroscopic chemical kinetics is based on differential

equations of the type
LESNCARNCARRCAR "
dt - dt in dt out dt pro dt con

- which are simple balances for the amount of species X,
(i=1,..,n) within the system, in standing for input, out for
output, pro for internal production and con for internal
consumption, the first two processes being relevant for: open
systems and the: last two being associated with chemical
reactions occurring in the system.
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Comparison with experimental data is usually done. in the
integrated form, that is, the system of differential equationg
(1) 1is integrated, analytically or numerically, and the
resulting time functions Xi(t) then compared with the
experimental ones, in order to extract rate constants or even
to test the proposed mechanism/kinetic scheme.

The opposite procedure is also possible, i.e., numerical
differentiation of experimental data followed by direct
comparison with the system of differential equations (1) (e. g.
method of the initial rates). For a number of reasgons, which
include the amplification of experimental error, this is a much
less common procedure. A general discussion of the advantages
and limitations of the differential and integral methods is
given by Laidler [1]. More recently, Steel and Razi Naqgvi [2]
addressed the differential method in detail.

The integration of system (1) can be made using several
mathematical techniques, including matrix methods [3-5].
However, when all the consumption rates (i.e. the second and
fourth terms in eq. 1 are first order (or pseudo-first order),
there is a straightforward way to write down the balances
directly in the integrated form. The method, based on the
concept of convolution, has been used in photochemical kinetics
[6]. In this letter,‘we summarize the approach and apply it to
two cases.

CONVOLUTION APPROACH

Suppose that a reactive chemical species X; can be

instantaneously produced at unit concentration at time t=0:

. ignoring the possibility of reformation of X via closed loops
{e.g. a reversible step), its time evolution will be given by a
certain function Xia(t)' This function is the response to a
unit input of X; at time zero, that is, to a Dirac’s delta
function &(t), and reflects all possible disappearance routes
for X, . It is in general a function of the concentration of X,
and of the concentration of the other species xj (3=1) .
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‘However, under first order or pseudo first order
conditions, this function is independent of all concentrations,

Xis (1) = exP(“Z k;t) (2)
i

where kij are strict or pseudo first order rate constants of
the elementary steps by which Xi disappears. Now the general
time evolution for X is given by the convolution integral

Xi(t)=J.Pi(e) X(t-0)d0=POX;, , (3)

0

where Pi(t) is the rate of production of Xi. This production
rate includes all steps that generate X either internal or
external, .and arising or not from closed loops. Equation 3 is
the fundamental equation of the convolution approach and can be
understood on the basis of the following: the total
concentration of Xi at a given instant t will be the sum of all
delta responses X, weighed Dby the respective initial amount
produced Pi(e) and taking into account that a time lapse t-8
has passed since that particular creation process.

Taking the time derivative of eq. 3 yields [6] of course
the usual differential balance

ax, j
=Zi_p- X, 4
dt P (;zk“)x‘ (4)

this being the proof of the equivalence of the differential and
convolution {integral) approaches. '

For a given kinetic problem, the full solution in terms of
the convolution approach is obtained in four steps:
(1) Identification ~ of the delta responses Xis(t); (2)
Identification of the production terms Pi(t); (3) Writing of
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the system of coupled (through the Pi’s) integral equations
Xi=PiQXia (i=1,2,..); (4) Sol‘ution of the system of coupled
equations, e.g. by the use of Laplace transformation theory.Two
cases will now be discussed.

A REVERSIBLE FIRST~ORDER REACTION

Consider the scheme

The &-production responses are,

As(t) = exp(=kt) (5)
B;(t) = exp(—k,t) , (6)
and the production rates are

P, =A5(t)+k,B (7)
Py =B5(t)+kA (8)

Combininé eqs 5-8 one obtains
A = A, exp(—kt) +k,B® exp(~k;t) (9)
B = B, exp(—k,t) + k,A ® exp(~k,t) (10)

The time evolutions of A and B are not indépendent, as eqgs 9
and 10 are coupled. Their separation is easily carried out by
the use of Laplace transforms. Knowing that the transform of
the convolution product  £8g is the product of individual
transforms, i.e. f8g=fg, one gets

A=y Ko 3 (11)
s+k, s+k,

=D, Kk 3 (12)
s+k, s+k,

This algebraic system is easily solved, and after Laplace:
inversion, one finally obtains

= f\lz"—[k2 +k, exp(—kt)]+ B, —1:(—2[1 —exp(—kt)] (13)
Bu . k]
B=—£—[k, +k, exp(—kt)]-FAor[l—exp(—kt)] (14)

where k=k1+k2. Equations 13 and 14 are well known but were

nowobtained without solving any differential jequations.
|
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A MECHANISM WITH BIMOLECULAR STEPS

Complex kinetic schemes frequently contain bimolecular
steps. If these cannot be assumed to be first order, the
present approach is not applicable to the species that decay by
those steps. Even then, the convolution approach may be of some
interest. Consider for instance the scheme, whose solutions are
already complicated [7],

A+B—C
A—2>D—S3E

Species A and B cannot in general be handled by the present
approach, as they participate in a bimolecular step. But
species C,D and E can still be related @ith A and B by this
approach. From the above enunciated rules, one can write

directly the following integral relations between
concentrations,
C=(k,AB)®1 ' (15)
D = (k,A) @ exp(—k,t) (16)
E = (k,D)®1=k,k,AQexp(—k,t)®1 (17)

Integral relations of this type may be of importance for the
experimental determination of rate constants.For example,if all
time evolutions are known from experiment, the rate
coefficients can be written as '

C C(t)
k,= = (18)
(AB)@! IA(u)B(u)du
E(t E(t)
Ko=) A (19)
© bel ID(u)du
D(t) D(t) (20)

k, = = |
ABexp(-kt) o ex,{- E(t)t/ j D(u)du J

As far as the authors are aware, this method has never been
used for the calculation of rate constants.
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DISCUSSION AND CONCLUSIONS

The aim of the present work was to show the interest .and
range .of applicability. of the convolution approach. It finds
several applicaEions in chemical kinetics, as it allows the
writing of the wmole balance equations directly in the
integrated form, whenever the decay of a species is
effectively first order.The first case discussed was a simple
kinetic scheme, whose results are well known. It served, however
to introduce the approach and to show its straightforwardness.
The final system discussed contained both unimolecular and
bimolecular steps. In cases like this, all species disappearing
through £irst order processes can still be handled by the
convolution mechanism, and this may allow the direct estimation
of rate constants or the comparison between experiméntal and
calculated time evolutions. More complex cases, where the rate
coefficients are time-dependent, including excimer formation
and radiationless energy transfer can also be treated by the
same formalism, nontrivial results being then obtained(6].
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