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The time dependence of rate coefficients and fluorescence anisotropy for a general production rate is obtained in a common
equation. Steady-state and phase-modulation results are recovered as special cases. Some implications of the results obtained
are discussed.

1. Introduction

Quantities arising in luminescence spectroscopy such as fluorescence anisotropy » and rate coefficients
k are generally time-dependent functions for the case of delta-function production of the respective excited
species.

The time dependence of the anisotropy is usually due to rotational motion of the emitter [1] or to
electronic energy transport [2] while the rate coefficient dependence on time may result, for instance, from
diffusion influenced collisional guenching [3] or electronic energy transfer [4]. The anisotropy and rate
coefficients pertaining to delta-impulse excitation conditions will be denoted by r;(z) and k(?).

For a general production rate P(t), the respective anisotropy r and rate coefficient & differ from r; and
ks. An obvious case is the steady state achieved for continuous production, where the quantities 7 and &
are even time independent. While particular relations for 7 and k have long been known [5,6], the general
equation for the production rate dependence of rate coefficients was only recently obtained [7]. On the
other hand, the explicit connection between anisotropy and production rate appears not to exist in the
literature in a general fashion, although the necessary relations are well known.

In this work, it is shown that the equation obtained for rate coefficients [7] is also valid for fluorescence
anisotropy. Some implications are discussed.

2. The production rate dependence equation

The production rate dependence of rate coefficients was obtained in [7] as

ks
kz%fi), 1)

where ® stands for convolution and f is the survival probability of the excited species following
delta-function production.
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We now give for eq. (1) a simple interpretation, by merely rewriting it as

k='/(;w(z‘, to)ks(t = t,y) dig, | (2)
where
w(t, 1) = P(t,)f(t—15) (3)

/[P(to)f(t —t,) dtg .

The function w(t, t,) is recognized as the fraction of emitters present at time ¢ that was produced at
time 7,. Therefore, the rate coefficient k is but the weighted average of time-shifted rate coefficients k.
This additivity of rate coefficients, expressed in eq. (2), is not totally surprising, as it is already
embodied in the starting convolution relation [7] A = P ® f, A being the excited species population.
Given the additive nature of anisotropy [8] and the above discussion, it i1s apparent that eq. (2) also
applies to this function; hence
L_Penf) (4)
Pof
and for a mixture of n excited species, eq. (4) generalizes to

n n
P& ( > KriNOiriafi) Pe| X airiSfi)
;e =1 - =1 , ()
Pe| ) KriNOIfi) IZIDY aifi)
i=1 i=1
where «,; and N, are the radiative rate constant and the initial number of the ith species, respectively,
and «, are the respective pre-exponential factors in the global decay law.
For excitation with vertical polarization, the anisotropy is defined as [8,9]

oy O =10 ©
I(t) +21, (1)’
where [ is the emission intensity component that is vertically polarized and 7, is the horizontally
polarized remainder. The denominator in eq. (6) is proportional to the excited state population [8,9]

I +2I,=aPQ®f, (7)
where « is a constant. It follows from egs. (4)—(7) that

I,=a/3P @ [f(1+2r)], (8)

I, =a/3P®[f(1-1)]. (9

3. Special cases
Specific forms for the production rate P(r) are now considered.

Steady-state
The steady state is conveniently obtained by making P(¢) = U(¢), U(¢) being the step function, and
taking the limit # — oo in eq. (1). One obtains

 [Tka(@)f () du
k=——0 , (10)
j(;f(u)du
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with a similar equation being valid for the steady state anisotropy,

[ () f(w) du
F=-t . (11)

[ 7(u) du
0
The survival probability f(7) can often be written as

£(1) = exp(~T) exp(—f()’kls(u) du), (12)

where I' is the decay constant, e.g. the inverse lifetime, 1 /7, if k4 refers to external processes of quenching
or the radiative rate constant, k , if ks refers to the nonradiative rate coefficient. In some cases the
intrinsic decay is strongly nonexponential owing to the time dependence of the nonradiative rate decay
coefficient, as with small molecules in the gas phase (quantum beats) [10] or some dyes in fluid media
(torsional relaxation) [11]. In these situations, the steady-state nonradiative rate constant is obtained by
substituting eq. (12) for f(¢) in eq. (10), yielding

—k,. (13)

;mz_oo__l____
[ 7(u) du
0

The fluorescence quantum yield, as obtained in steady-state measurements, is therefore given by [12]

Sk [Tf(w) 4 (14)
=—f = ) du.
okt k., Yo

The information obtainable from steady-state measurements on nonradiative processes is therefore
limited to its average rate coefficient k_ .. On the other hand, simultaneous determination of the
fluorescence quantum yield and of the decay function f(r) enables one to calculate the radiative rate
constant, regardless of the form of f(¢), cf. eq. (14).

The previous relations also apply in the case of external quenching processes. Assuming for simplicity

that the intrinsic decay is single exponential, i.e. characterized by a lifetime 7, one obtains the analogue of
eq. (13)
1

E=—;—————%, (15)
/O f(u) du

and a generalized Stern—Volmer relation

o0

‘6; =14+ kr, (16)
where ®? is the fluorescence quantum yield in the absence of quenching, ®? =k 7. This generalized
Stern—Volmer relation applies to quenching processes where transient effects are important and implies
nonlinear plots of @ /®, versus quencher concentration.

Harmonic production
The production rate used in phase-modulation fluorometry is composed of a sinusoidal term added to a
constant background,

P(t)=1+ m cos wt, (17)

m being the modulation and w the circular frequency.
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Using eqgs. (8) and (9) one obtains, for all times of interest,

I, zfoolw(u) du+m(Fc[I”8] cos wt+FS[I”5] sin wt), (18)
0

I, :/0 1, 5(u) du+m(F[1,5]cos wr+ F[I_ 4] sin wt ), (19)

where F. and F, stand for the Fourier cosine and sine transforms, respectively. From eq. (5) the
frequency-dependent anisotropy becomes

/wraf du+m(h[r6f] cos wt + F[rsf] sin wr)
, o= ) (20)

i foofdu+m(FC[f]coswt+Fs[f]sinwt)
0

However, in phase-modulation fluorometry the only observables are the phase ¢ and the modulation m
for each polarized component [13]

1”=C”ll +m cos(wt—q&u)], (21)
I,=C {1+m, cos(wr—¢,)], (22)
C, and C, being constants. Comparison of eq. (18) with eq. (21) yields
E[ 1]
tan ¢, = , (23)
"E[ 1]
uddl
—=(E[1]" + E[1,5]) /f I5(u) du. (24)

Analogous relations are obtained for the perpendicular component. From eq. (23) and the corresponding
one for ¢, it 1s found that

1
Fs[rﬁf] - 2(tan ¢H_ tan ¢J-) [(

2tan¢u+tan¢L)Fs[f]—3tan¢”tan¢lFC[f]], (25)

1

Z(tan ¢, — tan ¢l) [ K

3 S[f]—(tan<1>u+2tanq&i)Fc[f]]. (26)

Fc[raf] =

A plot of the Fourier transform pairs, one for each frequency, would be the analogue of the well known
Cole—-Cole plot in electric polarization [14], thus providing model independent information on depolariza-
tion (e.g., rotational dynamics). Plots of the Fourier sine transform multiplied or divided by the frequency
as a function of the cosine Fourier transform, as used in electric polarization studies [15] are also possible.
For instance, if f and r; are exponential functions of time

f(e)=et", (27)

rs(t) =rge™/m, | (28)
one obtains the following linear relationships

Flrn/l _1

—wa—:;Fc[raf], (29)

wF[rf]=r—aF[rf], (30)
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where

1 1
a=;+;. (31)

T

These plots allow a straightforward evaluation of the fundamental anisotropy r, and rotational
correlation time 1., whereas deviations to straight lines indicate more complex decays arising, for example,
from anisotropic rotational motion [1].

4. Conclusions

The production rate dependence of rate coefficients was shown to be applicable also to fluorescence
anisotropy. Some relations derived from it suggest alternative or complementary data analysis procedures
for the phase-modulation technique.
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