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On the distribution of the nearest neighbor
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The classical derivation of the distance distribution function of the nearest neighbor is discussed,
and its limitations outlined. A new derivation, more general, is presented and applied to a random

distribution of particles in a sphere.

L. INTRODUCTION

The approximation to consider, only, the interaction
between a particle and its nearest neighbor is sometimes
made in many-particle systems. For example, this has been
done in electronic energy transfer'” and stellar dynamics.>
Using the distance distribution function of the nearest
neighbor (DFN) the mean distance between the particles
can also be obtained (Appendix A).

The classical DFN* is valid whenever two conditions are
fulfilled: (i) uniform distribution of the particles and (ii)
mean distance between particles much smaller than the di-
mensions of the volume containing the particles.

A case where the first condition is not met is that of a
liquid: its molecules are crowded, and therefore the volume
occupied by each molecule must be taken into account.
Besides this excluded volume effect, a short range order ex-
ists. Both effects are mathematically expressed by the well-
known radial distribution function, g(7).° This function is
defined as the ratio of the actual number density (number
of particles per unit volume) at distance 7 from the particle,
n(r), to the bulk number density, »,

g(r) =n(r)/n. (n

Two typical cases are shown in Fig. 1: in Fig. 1(a) the
radial distribution function of a monoatomic liquid and in
Fig. 1(b) the radial distribution of a dilute monoatomic
gas. In both cases 7 is the center-to-center distance. The
probability of two molecules having a very small separation
is low because of the repulsive forces (“excluded vol-
ume”). Several progressively decreasing peaks occur in
g(7) of the liquid, reflecting a sort of multilayer disposition
of the molecules around the central molecule. Only for
large distances is the distribution uniform, with g(r) = 1.

In order to have a mean distance between particles simi-
lar to the dimensions of the vessel, it is clear that the parti-
cles can only be a few, say, less than one thousand. But this
is really a very small number. Does it have any physical
meaning? The answer is yes, and systems with this pecu-
liarity are not unknown. They may be called compartmen-
talized systems. Examples are gases in porous media and
molecules dissolved in micelles. In both cases a large num-
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ber of molecules is distributed by an equally large number
of compartments. In this way, each compartment contains
only a few molecules.

It is the purpose of this paper to derive DFN’s for the two
above-mentioned cases, where the classical DFN is not val-
id. For the sake of completeness, we start with the deriva-
tion of the classical DFN.

II. CLASSICAL DISTRIBUTION

Consider a large volume ¥, containing N particles, N3 1.
The number density is then n = N/V. Let w(r) be the
sought-for distribution function of the nearest neighbor. If
we choose a particle at random, and define a sphere of radi-
us 7 centered in that particle, and if the particles are uni-
formly distributed, the probability for a particle to occur
inside the sphere is simply v/V, where v = 477°/3.

Since the particles are considered dimensionless, they
can occur in any number (up to N) interior to 7. Then the
probability of having K particles in the sphere (plus the
central particle) is given by the binomial law

(- e

The probability that no particles occur interior to 7 is of
course P(0), but is also equal to one minus the probability
that the nearest neighbor occurs between zero and 7, that s,

J' (ndr=(1-2)" 3
— rdr={1—=—].
pnar=(1-3) @
By taking the limit N— o, while fixing n = N /¥, we get
- J w(r)dr = exp ( - 47:”) (4)
thus
w(r) = 4nr’n exp ( — 4wr’n/3). 5

Now it is clear that the derivation of the classical DFN
involves two assumptions, as referred in the introduction:
(i) uniform distribution of particles, that is, dimensionless
and noninteracting entities and (ii) infinite volume, valid
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Fig. 1. Radial distribution function for a liquid (a) and a dilute gas (b).

for finite volume systems if the number of particles is not
very small, roughly N > 1000.

II1. NONUNIFORM DISTRIBUTION OF
PARTICLES

The probability for a particle to be inside the sphere is the
ratio of the number of particles it contains to the total num-
ber of particles, which leads to v/¥ for a uniform distribu-
tion. The number of particles that exist in a spherical layer
of thickness dr at a distance 7 is 477*ng(r)dr, therefore the
number of particles interior to r is 47r’ng(r)dr. Substi-
tuting v/ ¥ in Eq. (3) by this expression multiplied by 1/N,
we get, instead of (5),

w(r) = 4mr’ng(r) exp( — J-r47rr2ng(r)dr)‘ (6)

This equation is still based on the assumption that the
particles are independently distributed outside the sphere.
Therefore, it will not hold when the bulk density is high.
However, in such a case w(r) ~8(r — d), where d is the
distance of closest approach.

IV. SMALL NUMBER OF PARTICLES

Quite another approach is required to obtain the DFN
when the number of particles is small. The starting point is
the distance distribution function for the isolated pair,
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w, (r), which we assume to be known. We further assume a
uniform distribution of the particles. In a three-particle
system there are two pairs comprising the same particle.

. The relative distances in these pairs are random variables,

R, and R,. The random variable minimum distance (near-
est-neighbor distance), R(2), is then

R(2) = min {R,R,} (N
or, explicitly,
RQ2)=(R,+R,—|R, —R,|)/2. (8)

Both R, and R, are distributed according to w,. At this
point, we are faced with the problem of finding the proba-
bility density function of a random variable [R(2)] that is
a known function of other random variables with known
distribution functions, and this is a standard procedure in
probability theory.® The region of integration is shown in
Fig. 2, for a hypothetical case where a <7 <b.

The cumulative distribution function of the nearest
neighbor, F,(r), is then given by

b pr
F,(r =ff wy(r)w,(ry)drdr,

r pb
+ff wy(ry)w, (ry)drdr,. 9)
Hence
Fz(r)=F1(r)+[I_Fl(r)]Fl(r) (10)
and, since by definition
wy(r) =2, (1
r
Eq. (11) becomes
b
wy(r) = 2w1(r)f w(r)dr. (12)

The generalization to a number N of pairs is straightfor-
ward if one considers that, for example,

R(3) =min {R,R,,R,}

= min{R,, min{R,, R;}} = min{R,R(2)}. (13)
Hence, in general, we can write
R(N) =min {R,R(N - 1)} (14)

and then Eq. (9) becomes

%

a r b

Fig. 2. Region of integration for the calculation of the DFN. The hatched
portion corresponds to min {r;,7,} <7.
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b r
Fy(r) =fj wy_ . (Nw,(r)dr, dr

r b
+ff Wy _ (Pw(r)dr, dr (15)

or

Fy(r)=F(r)+[1=F,(r)1Fy_,(r). (16)
The solution of (16) is easily obtained as

Fy(r)=1—[1-F,(n}". (17)
Thus

b N—-1
wy (r) = Nwl(r)(f wl(r)dr) . (18)

This equation is, of course, applicable to any distribution of
particles, even if not three-dimensional.

V. AN EXAMPLE: PARTICLES IN A SPHERE

The distribution of the isolated pair, w, (x), with x = r/
R,, where R; is the radius of sphere, is (Appendix B)

w,(x) = (3x¥/16) (x — 2)%(x + 4). (19)
Using Eq. (18) we get
wy (x) = (3Nx%/16) (x — 2)*(x + 4)
X(—x%/32+9x*16 — x>+ H)V-L  (20)
When N is very large (x <1, see Fig. 3)
wy (x) = 3Nx? exp( — Nx?) 2n

precisely the classical DFN, compare Eq. (5).

APPENDIX A

By definition the mean distance between particles D is
D=f rw(r)dr, (Al)
(o]

where w(r) is the distance distribution function of the

6
N=100
wy (X}
N=10
N=1
o
0 ' 2
X

Fig. 3. Distribution function of the nearest neighbor for N + 1 particles
randomly distributed in a sphere.
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Fig. 4. Distribution of two particles on two spherical surfaces of radii @
and b, interior to a sphere of radius R;.

nearest neighbor. With the classical function we get
D=T(4/3)(3/4m)"*n=13=05540n="%.  (A2)

For example a perfect gas at 1 atm and 298 K has D = 2
nm and a solution of concentration 10~ mol/dm® has
D =30nm.

Note that the assumption of a cubic arrangement yields
D =n="3, in error by 81%.

APPENDIX B

In order to derive the distance distribution function of a
pair of particles randomly distributed in a sphere we pro-
ceed by the following steps.

(1) Let the two particles be at first distributed at random
on two spherical surfaces of radii @ and b (one particle per
surface), as shown in Fig. 4. It is not difficult to obtain the
distance distribution function as

wy(x) =x/2ap,

wherex =r/R,,a =a/R,,and S = b /R,.

(2) Randomizing’ the parameter 8 with the distribution
function 382, one of the particles becomes uniformly dis-
tributed inside the sphere, while the other keeps its radial
location a. The distribution function, obtained from (B1),
is

(B1)

3x?, ifx<l—a

w;(x) = (3x/4a)[1 — (x —a)?], otherwise.

(B2)

(3) Finally, randomizing the parameter a with the dis-
tribution function 3a?, both particles are now distributed
at random in the sphere and we get

w;(x) = (3x%/16) (x — 2)%(x + 4). (B3)
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