
On When and How to use SAT
to Mine Frequent Itemsets

Rui Henriques, Inês Lynce, and Vasco Manquinho

INESC-ID/IST, Technical University of Lisbon, Portugal

rmch@ist.utl.pt,{ines,vmm}@sat.inesc-id.pt

Abstract. A new stream of research was born in the last decade with
the goal of mining itemsets of interest using Constraint Programming
(CP). This has promoted a natural way to combine complex constraints
in a highly flexible manner. Although CP state-of-the-art solutions for-
mulate the task using Boolean variables, the few attempts to adopt
propositional Satisfiability (SAT) provided an unsatisfactory performance.
This work deepens the study on when and how to use SAT for the
frequent itemset mining (FIM) problem by defining different encodings
with multiple task-driven enumeration options and search strategies. Al-
though for the majority of the scenarios SAT-based solutions appear to
be non-competitive with CP peers, results show a variety of interesting
cases where SAT encodings are the best option.

1 Introduction

Recent works [34, 24, 17, 9] show the cross-fertilization between Pattern Mining
(PM) tasks, the discovery of patterns within large datasets, and Constraint Pro-
gramming (CP), the programming paradigm wherein relations between variables
are stated declaratively in the form of constraints. Traditional greedy approaches
for PM contrast with optimal approaches developed within the artificial intelli-
gence community. While traditional research aims at developing highly optimized
and scalable implementations that are tailored towards specific tasks, CP em-
ploys a generic and declarative approach to model and mine patterns. This has
motivated the adoption of high-level modeling languages or general solvers (that
specify what the problem is, rather than outlining how a solution should be
computed) for the flexible definition of constraints, which are critical for many
PM applications and domains [22, 24, 21].

The core underlying task for every PM task is to count. Counting is required
for every constraint: a specific pattern shape is only of interest above a minimum
support threshold. However, here resides the efficiency bottleneck of CP solvers,
which need to deal with large counting options to solve frequency-based inequal-
ities. Even though state-of-the-art CP-based solutions are not yet as scalable
as traditional PM solutions [34], they can be used for local scans [32], for the
expressive definition of user-driven and non-trivial constraints [30], and their
optimal search nature have led to significant performance improvements in a
wide-diversity of problems [22].

2

In this work, we propose to study whether a specific class of CP solvers is
tailored to solve this core task. The target class of solvers, propositional Sat-
isfiability (SAT) solvers, aim to solve the Boolean SAT problem, which is the
problem of finding an assignment for a set of Boolean variables that evaluates
a target formula (usually restricted to a conjunctive normal form) to true. Al-
though Boolean encodings are commonly adopted by CP solvers for PM tasks
[17], to the best of our knowledge SAT-based solutions have only been proposed
to a particular subclass of PM problems aiming at discovering a fixed number
of patterns (k -PM) [30, 21].

Based on the critical need for an efficient CP solver for PM tasks, this work
undertakes an extensive review to understand how SAT solutions compare to
state-of-the-art CP-based alternatives. The target research question is: how SAT
behaves in comparison to more general CP frameworks for PM underlying tasks?
In section 2 the problem is defined and motivated. Section 3 introduces differ-
ent SAT encodings with multiple enumeration and search options. Section 4
describes the properties of the adopted implementations and conducts an exper-
imental analysis. The results are discussed and their implications synthesized.
Section 5 reviews related research with relevant contributions to the target prob-
lem. Finally, concluding remarks and potential prospective research directions
are presented.

2 Problem Definition

Definition 1. Let I be a finite set, called the set of items, let T be a finite set,
called the set of transactions, and let I be an itemset, I ⊆ I. A transaction
t ∈ T over I is a pair (tid, I), with tid an identifier and I ⊆ I.

Definition 2. An itemset database D over I is a finite set of transactions.
In a simplified way, a transactional dataset is a multi-set of itemsets (being the
language of itemsets LI = 2I\∅). Equivalently, an itemset database D can be
seen as a binary matrix of size m×n, where m=|T | and n=|I|, with Dti ∈ {0, 1},
such that:

D = {(t, I)|t ∈ T , I ⊆ I,∃i∈IDti = 1} (1)

Itemset

t1 A,E,G,K,N
t2 C,E,H,L,N
t3 A,D,H,J,O
t4 B,D,H,J,N
t5 A,D,H,J,N,P
t6 A,E,G,K,N,P

A B C D E F G H I J K L M N O P

t1 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0
t2 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0
t3 1 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0
t4 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0
t5 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 1
t6 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 1

Table 1: Illustrative itemset database: compact and Boolean views

A small example of an itemset database is given in Table 1. A traditional
example of an itemset database is the supermarket shopping, where each trans-
action corresponds to a transacted basket and every item to a bought product.

3

However, common attribute-value tables can be easily converted into an itemset
database. Both categorical data (where every attribute-value pair corresponds
to an item) and numeric data (following an expressive discretization technique
[32]) can be converted, with each row being mapped into a transaction.

Definition 3. The coverage ϕD(I) of an itemset I is the set of all transactions
in which the itemset occurs:

ϕD(I) = {t ∈ T | ∀i∈IDti = 1} (2)

Definition 4. The support of an itemset I, denoted supD(I), is its coverage
size: |ϕD(I)|, and the frequency of an itemset, denoted freqD(I), is supD(I)/n.

Considering the itemset database from Table 1, we have ϕD({J,N}) =
{t4, t5}, supD({J,N}) =|{t4, t5}|= 2 and freqD({J,N}) = 0.3(3). Now the tar-
get PM problem can be formulated.

Definition 5. Given an itemset database D and a minimum support threshold
θ, the frequent itemset mining problem consists of computing the set:

{I | I ⊆ I, supD(I) ≥ θ} (3)

Definition 6. Let a frequent itemset be an itemset with supD(I) ≥ θ, a pattern
is a frequent itemset that satisfies any other placed constraints over D.

Considering the database from Table 1 and fixing θ=3, {D,H, J} and {E,N}
are examples of frequent itemsets. Finding frequent itemsets is the core under-
lying task of every pattern discovery problem and, additionally, form the basis
for association-rule analysis, classification, regression, and clustering. FIM was
initially proposed in 1993 by Agrawal et al. [1].

2.1 CP Mapping

Flexible constraint-based methods are key for PM as they:

− Focus on what the problem is, rather than outlining how a solution should be
computed, is powerful enough to be used across a wide variety of applications
and domains [22, 24, 21] as it suppresses the need of adapting the underlying
traditional procedures in order to accommodate new types of constraints.

− Provide an easy method to adapt the search by changing the declarative
specification to combine and add new constraints. This not only supports
user-driven selection of which patterns are of interest, but FIM-based meth-
ods that may require iterative refinements as constraint-driven clustering
and pattern-based classification.

− Can expressively capture background knowledge to prune the explosion of
spurious and potentially non-interesting patterns [23]. These constraints may
include properties from both closed pattern mining [10] and domain-driven
pattern mining [3], which aim to incrementally improve results by refining
the way patterns and domain-knowledge is represented.

4

− Support the introduction of a wide variety of expressive constraints, as
pattern-set constraints (e.g. global patterns imposing overlapping relaxations
over local patterns), with key implications on a wide-variety of problems
ranging from web mining to bioinformatics [9, 17].

Although CP models like ConQueSt [10] or MusicDFS [37] already support a
predefined number of constraints, they do not allow for the expressive definition
and combination of constraints as CP approaches like FIMCP [17], PattCP [21],
or GeMini [30]. The selected mapping is based on the constraint encodings of
the later approaches. In these CP models for the FIM task, a Boolean variable
is used for every individual item Ii and for every transaction Tt. One assign-
ment of values to all Ii and Tt corresponds to one itemset and its corresponding
transaction set.

Definition 7. Let T be a transaction set, T ⊆ T . An itemset I can be defined
by the true item variables: Ii = 1 if i ∈ I and Ii = 0 if i /∈ I. A transaction
set T can be defined by the set of transactions that are covered by the itemset,
T = ϕD(I). Thus, Tt = 1 if t ∈ ϕD(I).

Corollary 1. The FIM task can now be viewed as the computation of valid and
frequent (I, T) combinations, i.e. on finding the set:

{(I, T) | I ⊆ I, T ⊆ T , T = ϕD(I), | T |≥ θ} (4)

We refer to T = ϕD(I) as the coverage condition while | T |≥ θ expresses
a support condition. These conditions restrict the valid variable assignments.
Note that given that neither I nor T are fixed, there can be an arbitrary high
number of valid attributions to Ii and Tt resulting in different (I, T) tuples that
satisfy both constraints.

Property 1 (Coverage Constraint). Given a database D, an itemset I and a
transaction set T , then

T = ϕD(I)⇔ (∀t∈T : Tt = 1↔ Σi∈IIi(1−Dti) = 0) (5)

where Ii ∈ {0, 1}, Tt ∈ {0, 1} and Ii = 1 if i ∈ I and Tt = 1 if t ∈ T [34].

Property 2 (Frequency Constraint). Given a database D, a transaction set T
and a threshold θ, then

| T |≥ θ ⇔ Σt∈T ≥ θ (6)

where Tt ∈ {0, 1} and Tt = 1 if t ∈ T [34].

We can now model the frequent itemset mining problem as a combina-
tion of the coverage constraint and the frequency constraint. To illustrate this,
[17] provides an example of a potential implementation in Essence [20] (solver-
independent modeling language):

1: given Freq : int, TDB : matrix[int(1..NrT),int(1..NrI)] of int(0..1)
2: find I : matrix[int(1..NrI)] of bool, T : matrix[int(1..NrT)] of bool
3: such that forall t: int(1..NrT)
4: T[t] ⇔ ((sum i: int(1..NrI).(1-TDB[t,i]) I[i])¡=0) (Coverage Constraint)
5: (sum t: int(1..NrT).T[t])≥Freq (Frequency Constraint)

5

3 Mapping

Since current state-of-the-art CP formulations for FIM rely on Boolean variables,
it is important to understand the impact of adopting approaches dedicated to
solve Boolean formulae. In particular, efficient and scalable SAT solvers devel-
oped over the last decades have contributed to dramatic advances in the ability to
solve problem instances involving thousands of variables and millions of clauses
[30]. Additionally, a potential mapping of previous constraints into a conjunctive
normal formula contains many binary clauses, which can be handled in a very
effective manner by SAT solvers. For these reasons, this work encodes FIM as a
SAT formula. Enumeration, search, encoding alternatives, and tunning options
are covered.

3.1 Core Encoding

The previously introduced coverage and frequency constraints map the FIM
problem into a high-level CP language. Next, an extended SAT encoding is
proposed. SAT clauses and pseudo-Boolean constraints will be interchangeably
adopted to facilitate their traceability.

Corollary 2 (Coverage Encoding). Given a database D, an itemset I and a
transaction set T , the SAT encoding for the coverage constraint is:

∧t∈T (∧i∈I|Dti
(¬Tt ∨ ¬Ii) ∧ (Tt ∨ (∨i∈I|Dti

Ii))) (7)

Proof . This formula is derived from equation (5) by:

1. rewriting the coverage sum:

Σi∈IIi(1−Dti) = 0

↔ Σi∈I|Dti
Ii = 0

↔ ∧i∈I|Dti
¬Ii

2. decomposing the equivalence into CNF:

Tt = 1⇔ ∧i∈I|Dti
¬Ii

↔ (¬Tt ∨ (∧i∈I|Dti
¬Ii)) ∧ (Tt ∨ ¬(∧i∈I|Dti

¬Ii))
↔ ∧i∈I|Dti

(¬Tt ∨ ¬Ii) ∧ (Tt ∨ (∨i∈I|Dti
Ii))

3. encoding the quantifier ∀mt∈T into m sets of clauses:

∀t∈T (Tt = 1⇔ ∧i∈I|Dti
¬Ii)

↔ ∧t∈T (∧i∈I|Dti
(¬Tt ∨ ¬Ii) ∧ (Tt ∨ (∨i∈I|Dti

Ii)))

Complexity. Considering n the size of I and m the number of transactions in
D, we have the following properties: an upper bound of m × n binary clauses,
and m clauses with a maximum of n+ 1 literals.

This SAT formula guarantees the consistency of Tt and Ii attributions.

To encode the frequency constraints, we need to extend the SAT notation to
include pseudo-Boolean (PB) constraints, which are extensions of SAT clauses
that support cardinality constraints and weighted literals. Additionally, we need
to adapt equation (6) into a reified frequency constraint for a more focused search
of space, as discussed in [22]. This model is equivalent to the original model.

6

Property 3 (Reified Frequency Constraint). Given a database D, a transac-
tion set T and a threshold θ, then:

| T |≥ θ ⇔ (∀i∈I : Ii = 1→ ΣTt
Dti ≥ θ) (8)

Corollary 3 (Frequency Encoding). Given a database D, a transaction set
T and a threshold θ, then the PB encoding for the frequency constraint is:

∧i∈I(θ¬Ii +Σt∈T |Dti
Tt ≥ θ) (9)

Proof. This formula is derived from equation (8) by:

1. rewriting the frequency inequality into a cardinality constraint:

ΣTt
Dti ≥ θ

↔ Σt∈T |Dti
Tt ≥ θ

2. decomposing the implication:

Ii = 1⇒ ΣTt
Dti ≥ θ

↔ Ii = 1 ∨ (Σt∈T |Dti
Tt ≥ θ)

↔ ¬Ii ∨ (∧t∈T |Dti
Tt ≥ θ)

3. mapping the previous formula into conjunctive normal form or, as below,
into pseudo-Boolean constraints:

¬Ii ∨ (Σt∈T |Dti
Tt ≥ θ)

↔ ¬Ii ∨ (1
θΣt∈T |Dti

Tt ≥ 1)

↔ θ¬Ii +Σt∈T |Dti
Tt ≥ θ

Potential SAT encodings for the ¬Ii ∨ (Σt∈T |Dti
Tt ≥ θ) constraint include

the use of sequential counters [36], binary decision diagrams [19], sorting
networks, or cardinality networks [4]. Note, however, that some of these en-
codings are not polynomial. Since solving these constraints is the core task
of our problem, we benefit from solvers oriented to solve them. Moreover,
a possible encoding using cardinality constraints would suffer from an ad-
ditional complexity, since we would need to translate: ¬Ii ∨CardConstraint.
For these reasons, a pseudo-Boolean representation is the natural choice;

4. translating the quantifier ∀ni∈I into n sets of clauses:

∀i∈I(I = 1⇒ ΣTtDti ≥ θ)
↔ ∧i∈I(θ¬Ii +Σt∈T |Dti

Tt ≥ θ)

Complexity. The incremental complexity added by this formula is n pseudo-
Boolean constraints (of the form ≥) with a maximum of m unweighted literals
and one weighted literal.

Concluding, equations (7) and (9) describe the resulting SAT encoding, which
has: i) m+ n variables; ii) Θ(mn) clauses with mn being binary clauses and m
clauses having Θ(n) variables; and iii) n pseudo-Boolean constraints with Θ(m)
variables.

7

3.2 Enumeration Options

Using SAT solvers on the previously defined encoding would output either one
frequent itemset (Ii literals assigned as true) or unsat, meaning that no itemset
satisfies the constraints. Understandably, model enumeration needs to be present
in order to solve the FIM problem, that is, to find the set of all frequent itemsets.

Note that an alternative strategy to define all frequent itemsets at the en-
coding level would mean an exponential growth of the search space, potentially
behaving similarly to a simple enumeration strategy. However, since we can easily
opt to adopt more expressive ways of performing enumerations, with significant
space cuttings on each iteration, we only target enumeration strategies.

For this purpose, we need to introduce two properties of frequency that allow
for pruning substantial parts of the search space, and dual formulation for FIM.

Definition 8. Let I be a set of items. A transaction (tid, J) contains I, denoted
I ⊆ (tid, J), if I ⊆ J . FIM approaches rely heavily on:

− monotonicity of frequency: if I ⊆ J , then the frequency of J is bounded
from above by the frequency of I;

− anti-monotonicity of frequency: if I ⊆ J and I is not frequent, then J is
also not frequent.

Definition 9. Given an itemset database D and a minimum support threshold
θ, the dual-FIM task centered on non-frequent itemsets is to compute:

2I/{I | I ⊆ I, supD(I) < θ} (10)

Table 2 rely on these notions to define different enumeration options. Explicit
and compact negations based on the (anti-)monotonic property are proposed as
well as further directions relying on alternative frequency-based properties.

3.3 Search Options

Previous enumeration strategies may not result in significant improvements if
SAT iterations do not put any guarantee on the granularity of the itemsets
found. For instance, if the subsets negation strategy is adopted and if the solver
tends to output finer itemsets, the adoption of this strategy will not be relevant.
The same is valid for the supersets negation strategy. To describe these search
options, a new concept needs to be introduced.

Definition 10. A maximal frequent itemset is a frequent itemset that also
satisfies:

∀I′⊃I :| ϕ(I ′) |< θ (11)

All itemsets that are a superset of a maximal itemset are infrequent, while
all itemsets that are subsets are frequent. Maximal frequent itemsets are the top
border between itemsets that are frequent and not frequent.

In an itemset database where ABCD is the only maximal frequent itemset, a
SAT solution using subsets negation may either find all frequent itemsets within
1 iteration or across Σn=4

i=1 C
n
i =15 iterations. The following three search options

guarantee an upper bound on the number of performed iterations.

8

Option Description
Example
I={A,B,C,D}

Simple

Observation. Adding a clause with the negation of the solution on every
iteration hampers the search, as it may result in redundant searches with
multiple assignments of transaction-based literals Tt for the same itemset.
Method. The added clause must only include the negation of item-based
literals Ii (i.e. exclude all transaction-based literals Tt).

sup({A,C})≥θ
(¬A∨B∨¬C∨D)

Subsets
Negation

Observation 1. If an itemset is frequent, then its subsets are also frequent
(monotonicity).
Method 1. Add the negation of the found itemset as well as the negation
of its subsets, so the number of SAT iterations can be largely reduced.
Observation 2. Negating every frequent itemset may result in an imprac-
tical growth of the number of clauses during the search. For a very simple
itemset database with mn = 100, the number of added clauses can reach
a thousand (significantly higher than the initial number of clauses used to
encode the problem).
Method 2. Compact the set of clauses obtained within one iteration in only
one clause. That is, in next run the solver must be able to select, at least,
one item that is not included in the previously found frequent itemsets:

I ≥ θ ⇒ ∨i|¬Ii
Ii

sup({A,C})≥θ
(¬A∨B∨¬C∨D)
∧(¬A∨B∨C∨D)
∧(A∨B∨¬C∨D)

sup({A,C})≥θ
(B ∨D)

Supersets
Negation

Observations. For fixed Ii literal attributions satisfying the coverage con-
straints, if no combination of Tt satisfies the frequency constraints, new
clauses can be directly learned corresponding to the supersets of the found
non-frequent itemset. This property was found to be critical for a dual-
FIM formulation.
Methods. Adopt dual-FIM problem for medium-to-low frequency thresh-
olds, and negate supersets negation in a similar fashion as subsets negation
(items of non-frequent itemsets cannot jointly appear):

I < θ ⇒ ∨i|Ii¬Ii
Note that the choice of when to adopt the FIM-dual should be dynam-
ically made based on the dataset properties (mainly density, but also
transactions-to-items ratio) and on the inputted frequency.

sup({A,C})<θ
(¬A∨B∨¬C∨D)
(¬A∨¬B∨¬C∨D)
(¬A∨B∨¬C∨¬D)
(¬A∨¬B∨¬C∨¬D)

sup({A,C})<θ
(¬B ∨ ¬D)

Others

Pointer 1. Adopt advanced enumeration strategy centered on implicit
methods as, for instance, cube representations [29].
Pointer 2. Use the monotonicity and anti-monoticity properties to affect
the exploitation of the structure of conflicts within a SAT solver.
Pointer 3. Exploit important relationships between itemset frequencies
beside monotonicity. These properties should not only affect the iterative
insertions, but can be included as constraints in the initial encoding. This
may result in significant improvements as the previous strategies. For ex-
ample, in the MAXMINER algorithm [7], relations of the following form
are exploited: freq({a, b, c}) = freq({a, b}) + freq({a, c})− freq({a}).
There are many more relations between the frequencies of itemsets. See
[13] for extensions based on the inclusion-exclusion principle. For a gener-
alization to other measures besides frequency, see [35].

–

Table 2: Enumeration Options

Largest-to-Shortest Maximal (LSM) search
This search option guarantees that the number of iterations equals the number

of maximal frequent itemsets by mapping the previous decision problem into
an optimization problem. Each iteration returns a maximal frequent itemset,
starting with the longest maximal frequent itemset until reaching the shortest
maximal frequent itemset. This is done by defining the following goal function:

min : Σn
i ¬Ii, (12)

9

and, understandably, by adopting one of the expressive enumeration strategies
based on the (anti-)monotonicity property. Otherwise, the goal of finding maxi-
mal frequent itemsets would be no longer a valid effort.

Constrained Monotonic Growing (CMG) search
One of the undesirable consequences of the LSM search method is the need to

fully exploit the search space within each iteration. That is, for an optimum value
for the goal function, several (potentially maximal) frequent itemsets need to be
incrementally compared. Additionally, most of the learned behavior needs to be
restarted across iterations. This is particularly critical for itemset databases with
either many maximal frequent itemsets (usually the case) or with multiple fine
maximal frequent itemsets.

In order to overcome the referred problems, we propose CMG, a more re-
laxed search option formulated over decision tasks that do not require the larger
maximal frequent itemsets to be found early. The CMG is based on two types
of searches: α-search and β-search. An α-search is a simple SAT iteration (out-
putting one frequent itemset). As a result, not only a clause expressively negating
its subsets is added, but also the itemset itself:

temporaryClause← ∨i|Ii{Ii}

After an α-search, a set of β-searches are performed with the goal of finding
larger frequent itemsets until a maximal frequent itemset is found (with unsat
being returned). When this happens, the clauses related to the previous itemset’s
items are removed, the found frequent itemset is expressively negated and a new
α-search is performed. This behavior is repeated until the α-search returns unsat.
An illustrative instantiation segment of CMG behavior for an itemset database
with I = {A,B,C,D,E} is presented next:

{A} a α-search()

temporaryClause← (B ∨ C ∨D ∨ E)

{A,B,E} a β-search({A, ?})
temporaryClause← (C ∨D)

unsat a β-search({A,B,E, ?})
learnedClauses← learnedClauses ∧ temporaryClause
temporaryClause← ∅
{C,E} a α-search()

Length Decreasing (LD) search
A third search option, LD search, benefits from a more focused search of space

as it fixes the length of the itemsets to be found. To guarantee that only maximal
frequent itemsets are selected, LD initially fixes this length to n and iteratively
decrements it. Alternative length settings are possible if a separate initial scan-
ning to the itemset database guarantees upper and lower bound restrictions on
the length of maximal frequent itemsets.

LD accomplishes this behavior by adding and removing equalities of the
form ΣiIi = k, with k ∈ {1, .., n}. However, since only few solvers support
the addition-removal of pseudo-Boolean constraints, a new set of variables A =

10

{A1, .., An} is added into the following additional constraint:

Σn
i Ii +Σn

i Ai = k (13)

In the simplest mode, all Ai variables are initially assigned to false until no
maximal frequent itemset with length n is found (unsat output). Incrementally
each Ai is reversed to true, so finer maximal frequent itemsets can be found.
Understandably, either the subsets negation enumeration option or the encoding
of equation (11) needs to be in place for an efficient search.

3.4 Mapping Restrictions

The need to test the proposed options against different pseudo-Boolean solvers
may require adaptations over the initial encoding. For simplicity, this section
only describes how to support the removal of clauses during enumeration. In
appendix, additional adaptations to deal with non-negated variables are covered.

Encoding Description

Incremental
Clauses

Method. Recur to: i) n additional variables (N = {N1, .., Nn}), to ii) n additional clauses:

∧i∈I(Ii ∨Ni) (14)

and to iii) manipulations over the vector of assumptions that SAT solvers usually disclose.
In α-searches the N Boolean vector of assumptions is set to true, so these new n clauses are
directly satisfied. In β-searches, the index i of the Ii items belonging to the target itemset
are fixed, and the respective Ni variables are set to false. Recurring to Ni assumptions,
the SAT solver behavior is similar to solvers that allow for clause removal and the level of
performance is closely maintained.
This is referred as incremental clauses encoding, because although no clauses need to be
deleted, still new clauses need to be added.

Fixed
Clauses

Observation. As the number of inserted clauses grows significantly with the number of
iterations, an encoding with an increasing number of clauses penalizes the performance.
Method. The strategy non-prone to insertions requires part of the reasoning to be done
outside of the solver. The challenge is that all new clauses are relevant, and, thus, need
to be maintained in memory. For instance, in a n=5 itemset database, if the solver finds
in initial iterations {I1I2I3} and {I1I3I5} (i.e. learned clauses are, respectively, I4 ∨ I5
and I2 ∨ I4), the new solutions need to satisfy all the learned clauses. In this strategy,
the storage and reasoning is done separately to affect the values of the N Boolean vector.
Following the introduced example, either N4 or N2 and N5 will iteratively assume the
value false. So the binary clauses to be satisfied, described in the previous option, will
guarantee that the respective items will be true.
This method of defining assumptions, needs however to be complemented with a control
variable y. This control variable is required for CMG search option to distinguish between
the α- and β-searches. Additionally, the following constraint needs to be satisfied:

y +ΣIi +ΣNi ≥ n+ 1, (15)

to guarantee that in β-searches (y assumed to be false) an additional item is selected.

Table 3: Encoding Options for Clause Removals

The majority of available pseudo-Boolean solvers do not support the dynamic
insertion or removal of clauses. Since the insertion of clauses is critical, when a
solver of interest does not allow for insertion, its implementation needs to be
adapted (usually by turning visible invocations to SAT solver methods at the
level of the pseudo-Boolean solver interface). Although the removal of clauses

11

is required within CMG and LD search options, it is rarely allowed and even
non-easily disclosed recurring to the interface of SAT solvers. Two encoding
adaptations to deal with removals are depicted in Table 3.

3.5 Tunning Options

Although multiple options for an efficient FIM were introduced, additional im-
provements can be performed either by adapting the initial encoding or the
solver behavior.

Constraints Reduction
From the multiple encoding adaptations that were studied, only one resulted in

a significant performance improvement (for medium-to-high support thresholds).
This adaptation is centered on a FIM-property that can lead to the reduction of
the initial Θ(mn) constraints or binary clauses (if the solver is able to clausify
all of these constraints) into only Θ(m+ n) constraints:

∧t∈T (¬Tt ∨ (∧i∈I|Dti
¬Ii))

↔ ∧t∈T (∧i∈I|Dti���
���XXXXXX(¬Tt ∨ ¬Ii))

↔ ∧t∈T (|Dti| ¬Tt +Σi∈I|Dti
-Ii ≥ 0)

Polarity Suggestions and Parameters
A simple and effective way to adapt the solver behavior is to change the po-

larity suggestions. Since we are interested in the early finding of larger itemsets,
polarity suggestions for Ii variables should be set to positive (this only degrades
performance when maximal frequent itemsets have a very fine length). Orthog-
onally, the polarity suggestions for Tt variables depend on a wide variety of
factors (as the given frequency, density, iteration step and search strategy), and,
therefore, can be dynamically attributed in a scope-sensitive manner.

Additionally, solver parameters as the decay factors for variable activity and
clause activity can be dynamically tuned on the basis of sensitive analysis.

Finally, the solver resolution can be adapted to be, for instance, sensitive to
the difference between the transaction and item literals in a way that promotes
a more focused search. This can result in significant performance improvements.
Note, however, that the solver functionally must be ensured to support the ad-
dition of new flexible constraints.

4 Results

This section details the undertaken evaluation of the previous options against
state-of-the-art CP solutions. First, we visit the properties of our implementa-
tion, then we describe the most significant observations, and, finally, we discuss
the results to retrieve a set of implications.

12

Covered Options
The supported encodings are the target FIM encoding and its dual formulation.

The simple and expressive subsets and supersets negation are covered enumer-
ation options. The modeling of (anti-)monotonicity properties at the encoding
level are not supported since they imply an exponential growth on the number of
variables and constraints. All the advanced search options (simple, LSM, CMG
and LD) are supported as well. Additionally, all the restrictions introduced were
found when linking some solvers, and, therefore, they are addressed in our ex-
periments. Finally, an extensive set of tunning options were implemented, with
the most significant being the ones described in the previous section.

Codification Alternatives
Different codifications were defined with the goal of supporting an efficient and

flexible interface with multiple pseudo-Boolean solvers. For instance, a codifi-
cation in Java can only interface efficiently with solvers in Java through direct
invocation. Otherwise, interaction needs to be done between executables (the de-
veloped layer and the solver), leading to an additional latency as a result of the
required synchronization between them. Additionally, the exchanged information
requires parsing. This hampers the performance as information is extensively ex-
changed in every iteration (note that the number of iterations is usually greater
than n2 for low frequencies).

Two classes of SAT solvers were adopted. The first class comprises the solvers
with open-source for whom all the covered options were implemented. The sec-
ond class includes the solvers with undisclosed-source with whom a simple goal
was assessed: see how they performed for specific single-iterations against the
alternatives. This was justified by the fact that since most of them do not sup-
port neither the use of assumptions nor the insertion of new clauses required to
perform enumerations. Although the full-feeding of these solvers with the en-
coding for every iteration was tried, the fact that they do not keep the learned
clauses in memory turned their performance impractical. These solvers are PBS
[2], BSOLO [28] and WBO [27].

The adopted solvers belonging to the first class are SAT4J [26] and Min-
iSat+ [19]. Note that, since SAT4J is implemented in Java and MiniSat+ is
implemented in C++, two codifications for the target solution were supported:
under Java and C++1.

Datasets
The adopted datasets were taken from the UCI repository2. The density of

the dataset is defined by the average number of items per transaction divided
by the size of the items’ alphabet. Although the selected datasets are not large
(note that optimal approaches suffer from scalability problems), they are dense
by nature and, therefore, their use within traditional approaches is still largely
computationally expensive.

1 web.ist.utl.pt/rmch/research/software
An additional third codification is available in C# upon request.

2 http://archive.ics.uci.edu/ml/

13

4.1 Observations

The computer used to run the experiments was an Intel Core i5 2.80GHz with
6GB of RAM. The algorithms were implemented using Java (JVM version 1.6.0-
24) and C++ (GCC 4.4.5) in 64-bit Linux (Debian 2.30.2) operating system.

Comparative analysis
Table 4 synthesizes the main results over UCI datasets for tunned MiniSat+

and SAT4J implementations under CMG search option and for the state-of-
the-art CP performer, FIMCP. The proposed SAT-based solutions have a phase
transition that relaxes for very low and medium-to-high frequency thresholds,
as illustrated in Fig.1. Contrasting, FIMCP behavior increasingly deteriorates
with the decrease of the frequency threshold.

θ=0,02 θ=0,05

Dataset]Items]Trans Density MiniSat+ SAT4J FIMCP MiniSat+ SAT4J FIMCP

Tic-tac-toe 27 958 0,33 366,7 –? 0,2 550,0 –? 0,1
Primary-tumor 31 336 0,48 17,8 –? 1,0 300,0 –? 0,5
Zoo-1 36 101 0,44 0,3 4,3 1,5 0,8 7,2 0,6
Vote 48 435 0,33 528,5 –? 2,0 –? –? 0,7
Soybean 50 630 0,32 –? –? 1,9 –? –? 0,5

Hepatitis 68 137 0,5 60,5 –? –? 229,8 –? –?

Lymph 68 148 0,4 –? –? –? –? –? –?

Kr-vs-kp 73 3169 0,49 380,5 –? –? –? –? –?

Hypothyroid 88 3247 0,49 433,3 –? –? –? –? –?

Heart-cleveland 95 296 0,47 –? –? –? –? –? –?

German-credit 112 1000 0,34 –? –? –? –? –? –?

Mushroom 119 8124 0,18 –? –? –? –? –? 49126
Aust-credit 125 653 0,41 –? –? –? –? –? –?

Audiology 148 216 0,45 –? –? –? –? –? –?

θ=0,1 θ=0,2 θ=0,4

Dataset MiniSat+ SAT4J FIMCP MiniSat+ SAT4J FIMCP MiniSat+ SAT4J FIMCP

Tic-tac-toe 33,8 36,0 0,1 2,3 1,9 0,1 0,2 0,0 0,0
Primary-tumor 330,0 –? 0,2 126,2 124,0 0,1 38,0 9,5 0,0
Zoo-1 1,2 9,0 0,2 1,4 17,0 0,0 0,8 0,8 0,0
Vote –? –? 0,3 149,3 397,5 0,1 5,4 2,1 0,0
Soybean –? 166,9 0,2 554,0 15,7 0,0 12,9 2,0 0,0

Hepatitis –? –? –? –? –? 2,5 382,1 –† 0,2
Lymph –? –? 19447 –? –? 0,1 14,2 9,1 0,0

Kr-vs-kp –? –? –? –? –? –? –? –† –?

Hypothyroid –? –? –? –? –? –? –? –? –?

Heart-cleveland –? –? –? –? –? –? 508,5 –† 0,8

German-credit –? –? –? –? –? 15,9 –? –? 0,5

Mushroom –? –? 11,9 –? –? 2,9 99,9 –† 0,5
Aust-credit –? –? –? –? –? –? –? –? 5,5
Audiology –? –? –? –? –? –? –? –? –?

Table 4: Overall efficiency of the proposed solvers against FIMCP (seconds)
?timeout; †memory out;

FIMCP is the best option when targeting either medium-to-high frequency
thresholds or normal-to-low dense datasets. However, when the target problem

14

Fig.1: Phase transitions for varying densities of generated datasets (using MiniSat+)

is based on low frequency thresholds over dense or large datasets, our adapted
MiniSat+ solution is the choice. Note that these cases are the most common
scenario in FIM problems, where the required frequency range to perform asso-
ciation rules falls between 1 and 2%. An illustrative example of this advantageous
behavior can be observed over the hepatitis dataset. The performance of FIMCP
for this dataset is only scalable until frequency thresholds near and above 20%.
For θ <10%, FIMCP performance exponentially deteriorates with θ decrements.
Interestingly, under this same θ range, MiniSat+ is able to answer to the FIM
problem in useful time as shown in Fig.2.

Fig.2: MiniSat+ behavior for Hepatitis dataset under very low frequencies

Since the performance of SAT4J is hampered by its resolution properties (not
tunned to deal with low frequency thresholds and not able to clausify key con-
straints) and by a bad memory management (dependent on a garbage collector),
the adoption of MiniSat+ or FIMCP is overall preferred.

Selecting SAT-based solvers
The selection of best performer selections based on the inputted frequency and

dataset properties implies an extensive analysis of the behavior of the solvers
across different axes of choice. Table 5 synthesizes the main results of the un-
dertaken analysis, which are further detailed in Appendix C.

4.2 Deepening the analysis behind SAT vs. CSP

Up to now, the most efficient CP approaches map FIM as a Constraint Satisfac-
tion Problem (CSP) [34]. A CSP problem is specified by a finite set of variables
V , an initial domain D (which maps every variable v ∈ V to a finite set of values
D(v)), and a finite set of constraints C in first-order logic. The goal is to output
the variable domains which satisfy all constraints. Thus, the solution to a FIM
problem can be directly retrieved from the codification of equations (5) and (8).

15

Axis Observations

Enumeration
options

◦ Although the negation of subsets or supersets within iterations lead to significant
performance improvements, the level of impact depends on the search ability to
early discovery the largest itemsets (as in LSM, CMG and LD);

◦ Interestingly, the explicit negation of each subset/superset is preferred over the
expressive one-clause-only negations when there is a high number of iterations as
solvers are able to remove duplicated negated subsets, while in the later option
there is an increasing redundancy that may hamper the search performance.

Search options

◦ CMG search is overall the best choice (β-searches are efficient);

◦ Simple search methods are only able to perform searches with acceptable effi-
ciency on high frequency thresholds over very sparse datasets, and should only be
adopted when resolution promotes an early discovery of larger itemsets;

◦ LSM searches are only competitive when a few number of iterations is performed
since each search is a lot heavier than a full CMG search (including one α-search
and multiple β-searches);

◦ LD is competitive with CMG for medium frequency thresholds (0.05 < θ <
0.2) on small datasets. LD performance quickly degrades with their growing size.
Although sat searches are light (focused on discovering frequent itemsets with a
given length) a significant overhead is added by the fixed number of heavier unsat
searches, particularly for a low-to-medium number of maximal frequent itemsets.

Encoding options
(restrictions)

◦ Clause-oriented encodings seems to be preferred over minimal encodings for
lower-to-medium frequency thresholds. Although minimal encodings have signifi-
cantly fewer constraints, they are not easy to clausify;

◦ Restricted encodings penalize the performance significantly (5-25%).

Tunning options

◦ Positive suggestions are adequate for low-to-medium frequencies (indicate a pref-
erence towards larger itemsets), while negative suggestions are indicated for higher
frequencies (since large itemsets are not frequent, more conflicts are found increas-
ing the number of backtracks and potential restarts);

Implementation
options

◦ SAT4J solver is the option for high frequency thresholds and for very sparse
datasets since it accepts non-constrained encodings and its resolution is more tuned
to find finer itemsets;

◦ MiniSat+ solver is the natural choice for the rest of the options due to, among
others, the tunned parameterizations as polarity suggestions and decaying factors.

Table 5: Key observations for the target SAT-based solvers across six dimensions

The first key concept used to speed up the search is constraint propagation to
reduce the domains of variables such that the domain remains locally consistent.
To maintain local consistencies, propagators are used to remove values from a
domain that can never satisfy a constraint.

Besides this property, constraint-based solvers are well-prepared to deal with
certain types of constraints. Two examples are: the summation constraint and the
reified summation constraint [22]. Flexible solvers as Gecode are well-prepared
to deal with them. The FIM problem heavily relies on these constraints.

Let x ∈ V ⊆ V be a variable with an associated weight wx, a summation
constraint as the following form [22]:

Σx∈V wxx ≥ θ (16)

The propagator task is to discover as early as possible whether the constraint is
violated (i.e. whether the upper-bound of the sum is still above the threshold).

In a reified summation constraint, the evaluation of a summation constraint
depends on a Boolean variable b (as adopted in the target frequency constraints):

b→ C ′(usually C ′ = Σx∈V wxx ≥ θ) (17)

16

The most important propagation that occurs for this constraint is the one that
updates the domain of b [22]. When an item variable is fixed, the following is
possible for the coverage constraint:

if for some t: Σi∈I(1−Dti)I
min
i > 0 then remove 1 from D(Tt)

if for some t: Σi∈I(1−Dti)I
max
i = 0 then remove 0 from D(Tt)

Once the domain of a variable Tt changes, the support constraint is activated.
The support constraint is simply a summation constraint, which checks whether:
Σt∈AT

max
t ≥ θ. If this constraint fails, CSP solvers do not need to branch further

and, therefore, can backtrack.

Contrasting, the mapping of reified frequency constraint into SAT is not
concisely handled, leading to the generation of nm clauses. Jointly these ob-
servations and the fact that SAT solvers are not able to expressively deal with
enumerations (in particular, when an arbitrary number of clauses are added be-
tween iterations) justify the poor performance of the developed solutions across
several datasets and frequencies.

4.3 Discussion

From the previous observations, several implications with impact on when to
use and how to tune SAT-based solutions can be retrieved.

When to use SAT-based solutions:

− for low frequency thresholds, with most promising results on dense datasets
(for instance, datasets typically adopted for classification tasks with nominal
attributes with few labels, or with numeric attributes that are binarized using
thresholds). The level of frequency used to opt for a SAT-based solution
depends on the density: if density is near 45-50% the frequency can reach
10%, while for other cases the frequency should not exceed 4%;

− when the problem is not defined as a complete enumeration, but aims to find
a fixed number of patterns of interest, or to verify its satisfiability;

− in specific cases for higher frequencies (mainly between 10% and 25%) when
the FIM problem is formulated as its dual;

How to tune SAT-based solutions:

− use an expressive enumeration strategy such as the compact subsets negation,
change polarity suggestions (item-related variables to positive and transaction-
related variables to false) and prefer clause-oriented encodings;

− adopt the search strategy according to the target instances and problem:

− by default and for the majority of cases, CMG search is the most efficient;

− simple search should only be adopted when the polarity suggestions can
be set according to the proposed guidelines for datasets with a good
distribution of frequent itemsets among transactions (otherwise the use
polarity suggestions do not guarantee that, within each iteration, large
itemsets are discovered);

17

− LSM search should be selected when we are interested in a subset of
itemsets with major interest (i.e. when there is the requirement of ob-
taining the k largest maximal frequent itemsets). In particular, the value
of k should be significantly lower than the total number of maximal fre-
quent itemsets (phase transition), otherwise a CMG search should be
preferred (although there is the need to generate all maximal frequent
itemsets since it does not guarantee if a maximal frequent itemset is one
of the k largest);

− be able to translate the flexible user-defined constraints into a SAT formula,
by defining generic methods to translate equivalences and implications. Note
that the distinguishing feature of CP is that it provides general principles for
solving problems with any type of constraints. Although some streams claim
that this observation sets it apart from SAT solving [9], we show that this
is a simple step as it is illustrated by the following constraints’ encodings:
− Ip = Iq → ∧i∈I(Ipi ⇔ Iqi)
− i ∈ Ip → Ipi
− Ip Iq = Ir → ∧i∈I(Iri ⇔ Ipi ∧ ¬I

q
i)

− Ip ∩ Iq = Ir → ∧i∈I(Iri ⇔ Ipi ∧ I
q
i)

− Ip ∪ Iq = Ir → ∧i∈I(Iri ⇔ Ipi ∨ I
q
i)

− coverItems(I1, .., Ik)→ ∧i∈I(∨j∈1..kI
j
i)

− coverTrans(I1, .., Ik)→ ∧t∈T (∨j∈1..kT
j
t)

Unfortunately, both the proposed SAT-based solution and any other CP so-
lutions are featured by high computational complexity and their straightforward
implementations are not applicable to large data sets. This advocates the need
for local learning where transactions are partitioned and multiple criteria can be
used for the integration of the frequent patterns found within each fragment (for
instance, through voting techniques [32]). Alternatively, the FIM constraints can
be used to compute information gain metrics [14] as the entropy-measure or its
dual formulation as a basis for pruning techniques.

5 Related research

The main research streams approaching PM within a CP framework can be clas-
sified according to: i) the extent to which an user can define novel constraints and
combine them, and ii) according to the type of supported constraints. Within
the first axis, although approaches as Patternist [10], Molfea [18] and MusicDFS
[37] support a predefined number of constraints, they do not allow for the ex-
pressive definition of novel constraints as FIMCP [17], PattCP [21] and GeMini
[30]. In the following section the constraints covered by existing approaches and
variations to the FIM problem are briefly presented. Finally, other related work
with potential relevant contributions is covered.

Extending Constraints.
Expressive CP models [30, 24, 21] enable the flexbile definition of constraints us-

ing: constants including numerical values, items as A, specific itemsets as {A,B},

18

and specific transactions as t7; variables (∨i|CIi and ∨t|CTt); set and numerical
operators (∪,∩, \,×,+,−); and function symbols involving one or several terms,
which can be built-in as overlapTrans(I, J)=|cover(I)∩cover(J)|) or defined by
the user as area(I)=freq(I)×size(I) or coverage(I, J)=freq(I∪J)×size(I∩J).

These constraints can be used to filter the patterns of interest. However they
can be used with a different purpose: closed itemset mining, discriminative pat-
tern mining, pattern-based clustering and pattern-based classification. A recent
direction is taking into account the relationships between local patterns to pro-
duce global patterns or pattern sets [24]. Despite their importance, there are
very few attempts to mine patterns involving several local patterns and the
existing methods tackle just particular cases by using devoted techniques [22].
In [30, 9], the importance of adopting a declarative CP-based approach to mine
global patterns was highlighted by several examples coming from clustering tasks
based on associations. Due to the complexity of this task and its easy modeling
through constraints, CP-based approaches as pattern teams [25] have been pro-
viding encouraging results when compared against heuristic-based approaches
that consider the added value of a new global pattern given extensive combina-
tions of selected patterns [11].

Problem Variations.
The introduced FIM approach can be extended and adapted in different ways.

One of the most common is the k-pattern set mining [21, 30]. Unlike FIM, the
problem of k-pattern set mining is concerned with finding a set of k related pat-
terns under constraints. The discovery of k representative patterns often uses
probabilistic models for summarizing frequent patterns [31] and other condensed
representations of patterns as the dataset compression using Minimum Descrip-
tion Length Principle [38]. These approaches mainly aim at reducing the redun-
dancy between patterns and, like our SAT approach, often focus on maximal
frequent patterns. The k-pattern set mining problem is a very general problem
that can be instantiated to a wide variety of mining tasks including concept-
learning, rule-learning, re-description mining, conceptual clustering and tiling
[21, 30].

Other Relevant Work.
Instead of mining rules that rely on frequent itemsets, some approaches en-

code the problem within the CP framework using (compact) reducts [5], i.e.,
subsets of most informative attributes. In this stream, a SAT representation is
often formulated as an Integer Programming (IP) model to solve the minimal
reduct constraints. In [32], an extensive research is done over Boolean reason-
ing methodologies for Rough Set theory. Two problems are encoded: the search
for reducts and the search for decision rules which are building units of many
rule-based classification methods.

Another important direction is the verification whether PM constraints are
satisfiable. This is a one-iteration-only decision problem that, according to our
previous analysis, can be handled using SAT solvers. An example of this task
with multiple applications in privacy preserving data mining, condensed repre-
sentations and the FIM problem, is the called FREQSAT problem [12]: given

19

some itemset frequency-interval pairs, does there exist a database such that for
every pair the frequency of the itemset falls into the interval? That is, given a
set of frequency constraints C = {freq(Ij) ∈ [lj , uj], j = 1...m}, verify if there
exists a database D over ∪mj=1Ij that satisfies C 3. The problem can be further
extended to include arbitrary Boolean expressions over items and conditional
frequency expressions in the form of association rules. Additionally, FREQSAT
is equivalent to probabilistic satisfiability (pSAT) [14].

6 Concluding Remarks

The use of SAT within the CP framework to address constrained-pattern min-
ing problems was demonstrated to be valid: not only the adopted variables are
Boolean, but expressive constraints can be easily mapped into a Boolean for-
mulae. Multiple search options, enumeration strategies, encoding alternatives
and parameterizations were studied in order to improve its performance. Under-
standably, these adaptations aim to orient SAT reasoning to the main properties
of frequent itemset mining, without loosing the ability to flexibly support novel
constraints.

Experimental results show that SAT-based solutions are competitive with the
state-of-the-art CSP solutions for an important range of frequencies (range com-
monly adopted to discover association rules or to perform classification tasks).
The efficiency problems found for higher frequencies mainly result from the fact
that SAT was not developed with the intent of perform enumerations under
the addition of new (and potentially conflicting) clauses. Finally, a set of guide-
lines were introduced to understand when to use and how to tune SAT-based
solutions.

Future Work. In the next steps one should expect:

− the extension of this approach to evaluate its impact not only in terms
of efficiency but also in terms of accuracy for FIM-based problems as the
discriminative-FIM problem;

− the exploitation of SAT limits and performance in comparison to CP ap-
proaches under an intensive use of constraints;

− the development of hybrid approaches with clear rules to select and tune
the best performer under certain conditions: i) the selected frequency, ii)
the nature of the problem constraints and relaxations, and iii) the dataset
properties – by order of relevance: the density, the number of items, the
item-to-transaction ratio and the number of transactions;

− the exploitation of potential improvements from the codification of the adopted
enumeration and search strategies at the encoding level;

3 suppose that the following set C of frequency constraints C is given: {freq({a, b}) ∈
[3/4, 1]; freq({a, c}) ∈ [3/4, 1], freq({b, c}) ∈ [3/4, 1], freq({d, e}) ∈ [3/4, 1], freq({d, f}) ∈
[1/2, 1], freq({e, f}) ∈ [1/2, 1], freq({a, b, c, d, e, f}) = 0}; C is in FREQSAT, because it is sat-
isfiable by the following database: D = {(1, {a, b, c, d, e}), (2, {a, b, c, d, e}), (3, {a, b, c, d, e}),
(4, {a, b, c, d, f}), (5, {a, b, c, e, f}), (6, {a, b, d, e, f}), (7, {a, c, d, e, f}), (8, {b, c, d, e, f})}

20

− the adoption of more expressive constraints besides (anti-)monotonicity, in-
cluding extensions based on the inclusion-exclusion principle [13] and other
frequency-based relations [7, 35];

− the finding of patterns in continuous data (as, for instance, required in many
bioinformatic datasets), which may require discretization techniques beyond
support-vectors, rough set and Boolean reasoning theories [32];

− the mining of frequent itemsets in structured data as sequences, trees and
graphs. New formulations are required to represent these problems under
CP, which may not be trivial to encode when recurring to a fixed number of
features or variables;

− the assessment of SAT approaches to perform constraint-based clustering
and constraint-based classifier induction (not necessarily relying on frequent
itemsets). In constraint-based clustering the challenge is to cluster examples
when additional knowledge is available about these examples, for instance,
prohibiting certain examples from being clustered together (so-called cannot-
link constraints) [30, 34]. Similarly, in constraint-based classifier induction,
one may wish to find a decision tree that satisfies size and cost-constraints
[8]. In traditional data mining, the relationship between itemset mining and
constraint-based decision tree learning was studied in [33], however such
relation was not yet exploited in a CP setting;

− the adoption of SAT verification (as the previously introduced FREQSAT
problem [14]) using deduction rules to prune/constrain the search of frequent
itemsets. The monotonicity rule is a very simple example of deduction. More
advanced rules, as the partial frequency available for some itemsets, bound
on the frequencies of itemsets yet to be counted. Examples of deduction rules
to improve pruning and speed-up FIM approaches are given in [6, 16];

− the study of potential techniques to turn SAT and other CP-based ap-
proaches scalable. Options may include the local scanning on dataset parti-
tions [32] or the use of data stream mining approaches [15].

References

1. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of
items in large databases. SIGMOD Rec. 22(2), 207–216 (Jun 1993)

2. Aloul, F.A., Ramani, A., Sakallah, K.A., Markov, I.L.: Solution and optimization
of systems of pseudo-boolean constraints. IEEE Trans. Comput. 56(10), 1415–1424
(Oct 2007)

3. Antunes, C.: An ontology-based framework for mining patterns in the presence
of background knowledge. In: 1st Int. Conf. on Advanced Intelligence (ICAI’08).
pp. 163–168. Chinese Association for AI, Post and Telecom Press, Beijing, China
(2008)

4. Aśın, R., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E.: Cardinality net-
works: a theoretical and empirical study. Constraints 16(2), 195–221 (2011)

5. Bakar, A.A., Sulaiman, M.N., Othman, M., Selamat, M.H.: Propositional satisfi-
ability algorithm to find minimal reducts for data mining. Int. J. Comput. Math.
79(4), 379–389 (2002)

6. Bastide, Y., Taouil, R., Pasquier, N., Stumme, G., Lakhal, L.: Mining frequent
patterns with counting inference. SIGKDD Explor. Newsl. 2(2), 66–75 (Dec 2000)

21

7. Bayardo, Jr., R.J.: Efficiently mining long patterns from databases. SIGMOD Rec.
27(2), 85–93 (Jun 1998)

8. Bessiere, C., Hebrard, E., O’Sullivan, B.: Minimising decision tree size as com-
binatorial optimisation. In: Proceedings of the 15th international conference on
Principles and practice of constraint programming. pp. 173–187. CP’09, Springer-
Verlag, Berlin, Heidelberg (2009)

9. Boizumault, P., Crémilleux, B., Khiari, M., Loudni, S., Métivier, J.P.: Discovering
knowledge using a constraint-based language. CoRR abs/1107.3407 (2011)

10. Bonchi, F., Lucchese, C.: Extending the state-of-the-art of constraint-based pattern
discovery. Data Knowl. Eng. 60(2), 377–399 (Feb 2007)

11. Bringmann, B., Zimmermann, A.: The chosen few: On identifying valuable pat-
terns. In: Proceedings of the 2007 Seventh IEEE International Conference on Data
Mining. pp. 63–72. ICDM ’07, IEEE Computer Society, Washington, DC, USA
(2007)

12. Calders, T.: Computational complexity of itemset frequency satisfiability. In: Pro-
ceedings of the twenty-third ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems. pp. 143–154. PODS ’04, ACM, New York, NY,
USA (2004)

13. Calders, T.: Deducing bounds on the support of itemsets. In: In Database Tech-
nologies for Data Mining - Discovering Knowledge with Inductive Queries, volume
2682 of LNCS. pp. 214–233. Springer (2004)

14. Calders, T.: Itemset frequency satisfiability: Complexity and axiomatization.
Theor. Comput. Sci. 394(1-2), 84–111 (Mar 2008)

15. Calders, T., Dexters, N., Goethals, B.: Mining frequent itemsets in a stream. In:
Proceedings of the 2007 Seventh IEEE International Conference on Data Mining.
pp. 83–92. ICDM ’07, IEEE Computer Society, Washington, DC, USA (2007)

16. Calders, T., Goethals, B.: Mining all non-derivable frequent itemsets. In: Proceed-
ings of the 6th European Conference on Principles of Data Mining and Knowledge
Discovery. pp. 74–85. PKDD ’02, Springer-Verlag, London, UK, UK (2002)

17. De Raedt, L., Guns, T., Nijssen, S.: Constraint programming for itemset mining.
In: Proceedings of the 14th ACM SIGKDD international conference on Knowledge
discovery and data mining. pp. 204–212. KDD ’08, ACM, New York, NY, USA
(2008)

18. De Raedt, L., Kramer, S.: The levelwise version space algorithm and its applica-
tion to molecular fragment finding. In: Proceedings of the 17th international joint
conference on Artificial intelligence - Volume 2. pp. 853–859. IJCAI’01, Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA (2001)

19. Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into sat. JSAT
2(1-4), 1–26 (2006)

20. Gent, I.P., Miguel, I., Rendl, A.: Tailoring solver-independent constraint models: a
case study with essence’ and minion. In: Proceedings of the 7th International con-
ference on Abstraction, reformulation, and approximation. pp. 184–199. SARA’07,
Springer-Verlag, Berlin, Heidelberg (2007)

21. Guns, T., Nijssen, S., de Raedt, L.: k-pattern set mining under constraints. IEEE
Transactions on Knowledge and Data Engineering 99(PrePrints) (2011)

22. Guns, T., Nijssen, S., Raedt, L.D.: Itemset mining: A constraint programming
perspective. Artif. Intell. 175(12-13), 1951–1983 (2011)

23. Henriques, R., Antunes, C.: An integrated approach for healthcare planning over
dimensional data using long-term prediction. In: 1st Proc. in Healthcare Informa-
tion Systems. Springer-Verlag, Beijing, China (2012)

24. Khiari, M., Boizumault, P., Crémilleux, B.: Constraint programming for mining n-
ary patterns. In: Proceedings of the 16th international conference on Principles and

22

practice of constraint programming. pp. 552–567. CP’10, Springer-Verlag, Berlin,
Heidelberg (2010)

25. Knobbe, A., Ho, E.: Pattern teams. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M.
(eds.) Knowledge Discovery in Databases: PKDD 2006, Lecture Notes in Computer
Science, vol. 4213, pp. 577–584. Springer Berlin Heidelberg (2006)

26. Le Berre, D., Parrain, A.: The Sat4j library, release 2.2. Journal on Satisfiability,
Boolean Modeling and Computation 7, 59–64 (2010)

27. Manquinho, V., Marques-Silva, J., Planes, J.: Algorithms for weighted boolean op-
timization. In: Proceedings of the 12th International Conference on Theory and Ap-
plications of Satisfiability Testing. pp. 495–508. SAT ’09, Springer-Verlag, Berlin,
Heidelberg (2009)

28. Manquinho, V.M., Marques-Silva, J.P.: On using cutting planes in pseudo-boolean
optimization. JSAT 2(1-4), 209–219 (2006)

29. McMillan, K.L.: Applying sat methods in unbounded symbolic model checking. In:
Proceedings of the 14th International Conference on Computer Aided Verification.
pp. 250–264. CAV ’02, Springer-Verlag, London, UK, UK (2002)

30. Métivier, J.P., Boizumault, P., Crémilleux, B., Khiari, M., Loudni, S.: A constraint
language for declarative pattern discovery. In: Proceedings of the 27th Annual ACM
Symposium on Applied Computing. pp. 119–125. SAC ’12, ACM, New York, NY,
USA (2012)

31. Mielikäinen, T., Mannila, H.: The pattern ordering problem. In: Proceedings of the
7th European Conference on Principles of Data Mining and Knowledge Discovery,
Lecture Notes in Artificial Intelligence. pp. 327–338. Springer-Verlag (2003)

32. Nguyen, H.S.: Approximate Boolean Reasoning: Foundations and Applications in
Data Mining. Transactions on Rough Sets V 4100, 334–506 (2006)

33. Nijssen, S., Fromont, E.: Optimal constraint-based decision tree induction from
itemset lattices. Data Min. Knowl. Discov. 21(1), 9–51 (Jul 2010)

34. Raedt, L.D., Guns, T., Nijssen, S.: Constraint programming for data mining and
machine learning. In: Fox, M., Poole, D. (eds.) AAAI. AAAI Press (2010)

35. Sayrafi, B., Van Gucht, D.: Differential constraints. In: Proceedings of the twenty-
fourth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems. pp. 348–357. PODS ’05, ACM, New York, NY, USA (2005)

36. Sinz, C.: Towards an optimal cnf encoding of boolean cardinality constraints. In:
van Beek, P. (ed.) CP. Lecture Notes in Computer Science, vol. 3709, pp. 827–831.
Springer (2005)

37. Soulet, A., Crémilleux, B.: An efficient framework for mining flexible constraints.
In: Proceedings of the 9th Pacific-Asia conference on Advances in Knowledge Dis-
covery and Data Mining. pp. 661–671. PAKDD’05, Springer-Verlag, Berlin, Hei-
delberg (2005)

38. Vreeken, J., Leeuwen, M., Siebes, A.: Krimp: mining itemsets that compress. Data
Min. Knowl. Discov. 23(1), 169–214 (Jul 2011)

23

A Positive Literals

Some solvers only admit a simplified and constrained pseudo-Boolean notation as input.
An example is the exclusion of negated literals, which may not be trivial to handle. The
translation of coverage constraints into constraints with non-negated literals is trivial:

∧t∈T (∧i∈I|Dti
(¬Tt ∨ ¬Ii) ∧ (Tt ∨ (∨i∈I|Dti

Ii)))

↔ ∧t∈T (∧i∈I|Dti
(Tt ∨ Ii ≤ 1) ∧ (Tt ∨ (∨i∈I|Dti

Ii) ≥ 1))

The frequency constraints were translated with the goal of maintaining the advan-
tageous ≥ operator:

∧i∈I(θ¬Ii +Σt∈T |Dti
Tt ≥ θ)

↔ ∧i∈I(−θ¬Ii +Σt∈T |Dti
Tt ≥ 0)

In this fashion, solvers as Minisat+ [19] can be tested without significant overhead,
as most of them internally are able to clausify both of the pseudo-Boolean constraints
defined for the coverage restrictions.

B Results

The following appendix sections detail the observations made in Table 3. The adopted
datasets for these experiments are either: real UCI datasets (distributed in Fig.3 ac-
cording to their properties) or generated datasets (with customized number of items,
number of transactions and density) whose generation depend on a biasing parameter
γ for the emerging of patterns according to a distribution similar as real datasets. The
small but representative zoo dataset is often used to compare options.

Fig.3: Characterization of the target datasets (high density in black, low in gray)

B.1 Enumeration options

As expected, the adoption of the monotonicity principle within each enumeration have
significantly impacted the performance of SAT solvers. According to an extract of the
results in Table 6, two main observations can be drawn. First, the level of impact by
(either simply or expressively) negating subsets depends on the search option and on
the target frequency.

Understandably, such impact depends on the ability to early discover the largest
itemsets. This is the reason why subsets negation is key to LSM and CMG searches
(its development relies on this principle), and important, but not so significant, within
simple search methods. Additionally, cutting space through subsets negation is more
critical for low frequencies, as an increasing length and number of itemsets is observed.

Second, the choice of when to explicitly insert a negation of each subset or to
expressively insert one unique clause requiring the selection of an item not observed in

24

Search Enumeration θ=0,2 θ=0,4 θ=0,6

Optimization (SAT4J)

Simple 1514,0 230,0 1,0
Expressive Simple 943,7 89,2 0,1
Subsets Negation 31,3 2,6 0,1
Expr. Subsets Neg. 18,2 1,8 0,1

Decision (SAT4J)

Simple 1009,4 12,6 0,5
Expressive Simple 589,8 5,4 0,2
Subsets Negation 208,8 4,8 0,1
Expr. Subsets Neg. 183,0 6,5 0,2

Table 6: Comparison of enumeration strategies for the zoo dataset (seconds)

the found itemset is not simple. This choice depends on two factors: the total number
of similar itemsets and the relative length of the found itemset. In the first case, when
we have multiple similar frequent itemsets (sharing the majority of items), the explicit
insertion of repeated negated sub-itemsets is detected by the solver, and the repeated
clauses are removed, while in the expressive insertion every new clause is inserted as-
is as a new problem constraint. In the second case, when the length of itemsets is
small in comparison with the item alphabet this means that, although the negated
sub-itemsets inserted by an explicit negation strategy generate multiple clauses, the
number of clauses is not high and the number of literals per clause is low. Contrasting,
although expressive negation strategies only add a clause per iteration, the number of
literals can be significantly high and may hamper the resolution performance. These
observations claim for an increased attention on the strategy selection based on the
inputted frequency and dataset properties.

B.2 Search options

The first observation coming from the search option results is that, although CMG
search is overall the best choice, the performance of the searches highly vary accord-
ing to the dataset density and input frequency. Maximal-oriented searches (as LSM,
CMG and LD) perform better for low frequency thresholds in dense datasets and for
high frequency thresholds in sparse datasets. Table 7 performs a two-axes evaluation
– over generated datasets with varying densities and over a fixed dataset with varying
frequency thresholds.

Search Dense Gen. Normal Gen. Sparse Gen

Simple –? –? –?

LSM 3491,4 176,2 75,4
CMG 268,6 97,5 62,9
LD 1296,4 343,9 291,2

θ=0,02 θ=0,05 θ=0,1 θ=0,2 θ=0,4

Simple 1020,1 978,9 792,3 183,0 6,5
LSM 5,9 14,1 26,8 17,0 1,8
CMG 4,9 7,4 9,6 7,6 1,0
LD 5,4 9,8 9,5 7,4 3,4

Table 7: Comparison of search options on generated datasets with different densities
(θ=0,05) and on zoo dataset with different frequencies using SAT4J (seconds)

25

θ=0,02 θ=0,05 θ=0,1 θ=0,2 θ=0,4

Simple
Number of searches 62032 30369 9354 4087 367
Average time per search 2,3 2,5 3,7 7,6 49

LSM
Number of searches 119 221 298 267 90
Average time per search 8 23 43 78 195

CMG

Number of α-searches 119 221 298 267 90
Average time per main search 2,2 2,2 2,8 4,3 38
Number of β-searches 244 783 1075 622 134
Average time per constrained search 1,02 1,02 1,11 1,22 9,1

LD

Number of unsat searches 32 32 32 32 32
Average time per main search 7,2 8,4 15,3 27,4 82
Number of sat searches 119 221 298 267 90
Average time per constrained search 2,7 3,2 3,9 6,3 28,3

Table 8: Search options in MiniSat+: number of searches and avg. time (miliseconds)

Simple search methods are only able to perform searches with acceptable efficiency
on high frequency thresholds over very sparse datasets. In fact, even when adopting
the monotonicity principle, simple searches do not scale as it is visible based on the
increasing number of iterations (Table 8) as frequency thresholds decrease. Simple
searches should only be adopted for an implementation that is able to promote the
early selection of larger itemsets by, for instance, adjusting the polarity of the item
variables. If this is the case where maximal frequent itemsets are guaranteed, simple
search should be able to outperform constrained CMG.

LSM searches are only competitive when a few number of iterations is performed
since each search is a lot heavier than a full α-search (include multiple β-searches) as
it has a larger space to exploit. This is usually the case where multiple similar itemsets
(e.g. ACD, ACE, ADE, BCD, BDE) collapse into unique maximal frequent itemsets
(e.g. ABCDE) as a result of the threshold frequency decreasing.

CMG searches smooths the heavy computational cost of discovering multiple similar
itemsets as each β-search is very light as depicted in Table 8. The average time per
β-search is less than a half of an α-search (and this relation even decreases under more
larger datasets).

Finally, LD is as competitive as CMG for medium frequency thresholds (0.05 <
θ < 0.2) on small datasets (LD performance quickly degrades with their growing size).
Instead of performing α- and β-searches, it performs one unique type of search for a
fixed length of itemsets, which is a very focused search. In order to cover all possible
lengths, n of these searches are unsat. The number of sat searches is equal to the number
of maximal frequent itemsets. A search returning sat has a similar performance as an
α-search, being the additional overhead added by a fixed number of unsat searches
(understandably, not varying with the input frequency). This overhead can be critical
as a search returning unsat is largely heavier than a search returning sat or a β-search
(see Table 8). Therefore, the adoption of this search option essentially depends on how
the number of items (defining the number of unsat searches in LD) compares to the
number of maximal frequent itemsets (influencing the number of β-searches in CMG).

B.3 Encoding options

Two main observations can be derived from the experimental tests over different en-
codings (see Table 9). First a clause-oriented encoding seems to be preferred over a
constrained encoding. Among other aspects, the adopted constrained encoding requires

26

the use of non-negated variables and additional clauses and variables to support later
clause-removals. This is particularly true for SAT4J as this solver is not able to clausify
some of these constraints.

Encoding θ=0,02 θ=0,05 θ=0,1 θ=0,2 θ=0,4 θ=0,6

Clause-oriented 4,3 7,9 9,1 7,1 1,0 0,3
Alternative 4,8 10,9 29,0 7,0 1,0 0,2
Constrained 5,3 8,8 46,8 8,4 2,0 0,4
Alternative Constrained 5,9 12,9 60,7 8,3 1,3 0,2

Table 9: Comparison of encodings for the zoo dataset using SAT4J (seconds)

Second, alternative encod-
ings that aim to reduce the num-
ber of clauses from Θ(mn) to
Θ(m+ n) (see section 3.5), may
not result in significant improve-
ments as the solver instead of
having to deal with nm simple
binary clauses has to deal with
m complex constraints. The choice of whether to adopt or not this encoding mainly
depends on the inputted frequency threshold (adopt for θ > 20% and avoid its use
under low frequency thresholds).

B.4 Tunning options

As depicted in Fig.4, two simple variable polarity suggestions were undertaken. The
positive suggestion is the choice for low frequency thresholds. This results from the fact
that since item variables are set to true, larger itemsets tend to be initially identified.

Fig.4: Positive vs. negative polarity suggestion for the zoo.txt dataset (miliseconds)

However, the negative suggestion becomes the option for frequencies below 20%
in many datasets (∼30% in Fig.2). This derives from the fact that in the positive
suggestion many of the initial large itemset options will not be verified with this higher
thresholds, so significantly more conflicts are found within each iteration leading to an
additional inefficiency related to the number of backtracks.

Advanced polarity suggestions should not only take into account an overall sugges-
tion for all the variables, but also be able to: i) differentiate the polarity suggestion

27

between item variables and transaction variables, and ii) be able to locally adapt sug-
gestions based on task-driven heuristics (e.g. a low number of occurrences of an item
variable relative to others may result in a negative polarity suggestion).

B.5 Implementation options

Interestingly, Fig.5 shows that each adopted SAT solver has a unique behavior when
answering to the FIM problem. SAT4J is the best option when we are targeting high
frequency thresholds and when mining very sparse datasets. Beyond its resolution speci-
ficities, this is also a result of accepting non-constrained encodings (including, among
others, negated variables, differentiated insertion of clauses and pseudo-Boolean con-
straints, and clause removal). SAT4J main problems are related to memory inefficiency
when dealing with large datasets and with the fact that its algorithm is more tuned to
find smaller itemsets, which hampers the behavior of CMG searches since it exponen-
tially increases the number of β-searches.

Fig.5: Implementation options for the zoo dataset under the best method

MiniSat+ is the natural choice for the rest of the options – dense datasets and low
frequency thresholds. This is not only a consequence of the resolution methods or of
C++ additional efficiency, but also a result of multiple improvements related to the
solver parameterizations, with positive polarity suggestion being the most significant.

The discussion of the behavior of other adopted solvers as PBS [2], BSOLO [28]
and WBO [27], is out of the scope as a result of an excessive latency caused by the
need to call them as executables. The successive memory refreshes among iterations
and recurrent need to parse and clausify formulas distorts any potential analysis.

B.6 Fixing phase transitions

(a) Phase transitions for varying]items (b) Phase transitions for varying]transactions

Fig.6: Phase transitions for varying size of generated datasets (using MiniSat+)

28

The study of phase transitions on generated datasets with varying density (Fig.1),
number of items (Fig.6a) and number of transactions (Fig.6b) led to two main observa-
tions. First, density is the property of datasets with highest impact on the performance
of the proposed solution. The variation of a few percentage points can exponentially
hamper the performance of our solution. Second, and understandably, the size of the
dataset is also a decisive criterion affecting the behavior of our solution. A variation
on the number of items is more critical than on the number of transactions. Although
our solution hardly scales for a number of items above 100, for low frequencies in dense
datasets or high frequencies in sparse datasets it can handle up to 10.000 transactions.

C Software Capabilities

− flexible selection and combination of the search options, enumeration strategies,
target datasets, frequencies of interest and optimization parameters (a fragment
of the testing code in Java is depicted below);

− extensible codification that gives a basis to model real-problems using simple and
enumeration-centered SAT or PB:
− Utils package contains a general set of encoding functionalities as the generation

of .opb and .cnf files adapted to the restrictions of a particular solver;
− Solver package provides the interface to SAT solvers (supporting both a direct

interface through methods invocation or via executables) and the ability to
select multiple search and enumeration options in a task-independent manner;

− parameterizable generation of datasets and their expressive and usable adoption
to test limits of performance;

− flexible addition of pattern mining constraints (by extending the SatPM class);

1: List<Dataset> datasets = DatasetGeneration.getDatasets();
2: List<SATHandler> handlers = SolverOptions.getSolvers();
3: List<Strategy> strategies = StrategyOptions.getStrategies();
4: for(Dataset dataset : datasets)
5: dataset.encodingOption(encodingID);
6: for(SATHandler handler : handlers)
7: handler.setPolarity(polarityID);
8: for(Strategy strategy : strategies)
9: for(double freq=0.01; freq≤0.8; freq+=0.01)
10: results.add(new StandardFIM(dataset,handler,strategy).run());

The software is available in web.ist.utl.pt/rmch/research/software.

