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Abstract Models learned from high-dimensional spaces, where the high number of
features can exceed the number of observations, are susceptible to overfit since the
selection of subspaces of interest for the learning task is prone to occur by chance.
In these spaces, the performance of models is commonly highly variable and de-
pendent on the target error estimators, data regularities and model properties. High-
variable performance is a common problem in the analysis of omics data, health-
care data, collaborative filtering data, and datasets composed by features extracted
from unstructured data or mapped from multi-dimensional databases. In these con-
texts, assessing the statistical significance of the performance guarantees of models
learned from these high-dimensional spaces is critical to validate and weight the in-
creasingly available scientific statements derived from the behavior of these models.
Therefore, this chapter surveys the challenges and opportunities of evaluating mod-
els learned from big data settings from the less-studied angle of big dimensionality.
In particular, we propose a methodology to bound and compare the performance of
multiple models. First, a set of prominent challenges is synthesized. Second, a set of
principles is proposed to answer the identified challenges. These principles provide
a roadmap with decisions to: i) select adequate statistical tests, loss functions and
sampling schema, ii) infer performance guarantees from multiple settings, includ-
ing varying data regularities and learning parameterizations, and iii) guarantee its
applicability for different types of models, including classification and descriptive
models. To our knowledge, this work is the first attempt to provide a robust and flex-
ible assessment of distinct types of models sensitive to both the dimensionality and
size of data. Empirical evidence supports the relevance of these principles as they
offer a coherent setting to bound and compare the performance of models learned in
high-dimensional spaces, and to study and refine the behavior of these models.
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1 Introduction

High-dimensional data has been increasingly adopted to derive implications from
the analysis of biomedical data, social networks or multi-dimensional databases.
In high-dimensional spaces, it is critical to guarantee that the learned relations are
statistically significant, that is, they are not learned by chance. This is particularly
important when these relations are learned from subspaces of the original space and
when the number of observations is not substantially larger than the number of fea-
tures. Examples of data where the number of observations does not significantly
exceed the number of features include collaborative filtering data, omics data (such
as gene expression data, structural genomic variations and biological networks),
clinical data (such as data integrated from health records, functional magnetic res-
onances and physiological signals), and random fields (Amaratunga, Cabrera, and
Shkedy 2014). In order to bound or compare the performance of models composed
by multiple relations, the impact of learning in these high-dimensional spaces on
the statistical assessment of these models needs to be properly considered.

Despite the large number of efforts to study the effects of dimensionality and
data size (number of instances) on the performance of learning models (Kanal and
Chandrasekaran 1971; Jain and Chandrasekaran 1982; Raudys and Jain 1991; Ad-
cock 1997; Vapnik 1998; Mukherjee et al. 2003; Hua et al. 2005; Dobbin and Simon
2007; Way et al. 2010; Guo et al. 2010), an integrative view of their potentialities and
limitations is still lacking. In this chapter, we identify a set of major requirements to
assess the performance guarantees of models learned from high-dimensional spaces
and survey critical principles for their adequate satisfaction. These principles can
also be applied to affect the learning methods and to estimate the minimum sample
size that guarantees the inference of statistical significant relations.

Some of the most prominent challenges for this task are the following. First, as-
sessing the performance of models based on simulated surfaces and on fitted learn-
ing curves often fail to provide robust statistical guarantees. Typically under these
settings, the significance of the estimations is tested against loose models learned
from permuted data and the performance guarantees are not affected by the vari-
ability of the observed errors (Mukherjee et al. 2003; Way et al. 2010). Second,
many of the existing assessments assume independence among features (Dobbin
and Simon 2005; Hua et al. 2005). This assumption does not hold for datasets in
high-dimensional spaces where the values of few features can discriminate classes
by chance. This is the reason why learning methods that rely on subsets of the orig-
inal features, such as rule-based classifiers, have higher variance on the observed
errors, degrading the target performance bounds. Third, error estimators are often
inadequate since the common loss functions for modeling the error are inappropriate
and the impact of test sample size is poorly studied leading to the collection error
estimates without statistical significance (Beleites et al. 2013). Fourth, assessment
methods from synthetic data commonly rely on simplistic data distributions, such
as multivariate Gaussian class-conditional distributions (Dobbin and Simon 2007).
However, features in real-world data (biomedical features such as proteins, metabo-
lites, genes, physiological features, etc.) exhibit highly skewed mixtures of distri-
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butions (Guo et al. 2010). Finally, existing methods are hardly extensible towards
more flexible settings, such as the performance evaluations of descriptive models
(focus on a single class) and of classification models in the presence of multiple and
unbalanced classes.

In this context, it is critical to define principles that are able to address these
drawbacks. In this chapter, we rely on existing contributions and on additional em-
pirical evidence to derive these structural principles. Additionally, their integration
through a new methodology is discussed. Understandably, even in the presence of
datasets with identical sample size and dimensionality, the performance is highly
dependent on data regularities and learning setting as they affect the underlying sig-
nificance and composition of the learned relations. Thus, the proposed methodology
is intended to be able to establish both data-independent and data-dependent assess-
ments. Additionally, it is suitable for distinct learning tasks in datasets with either
single or multiple classes. Illustrative tasks include classification of tumor samples,
prediction of healthcare needs, biclustering of genes, proteomic mass spectral clas-
sification, chemosensitivity prediction, survival analysis, or putative class discovery
using clustering.

The proposed assessment methodology offers three new critical contributions to
the big data community:

e integration of statistical principles to provide a solid foundation for the defini-
tion of robust estimators of the true performance of models learned in high-
dimensional spaces, including adequate loss functions, sampling schema (or
parametric estimators), statistical tests and strategies to adjust performance guar-
antees in the presence of high variance and bias of performance;

e inference of general performance guarantees for models tested over multiple
high-dimensional datasets with varying regularities;

e applicability for different types of models, including classification models with
class-imbalance, regression models, and local and global descriptive models.

This chapter is organized as follows. Below, we provide the background required
for the definition and comprehension of the target task — assessing models learned
from high-dimensional spaces. Section 2 surveys research streams with important
contributions for this task, covering their major challenges. Section 3 introduces
a set of key principles derived from existing contributions to address the identi-
fied challenges. These are then coherently integrated within a simplistic assessment
methodology. Section 4 discusses the relevance of these principles based on ex-
perimental results and existing literature. Finally, concluding remarks and future
research directions are synthesized.
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1.1 Problem Definition

Consider a dataset described by n pairs (x;,y;) from (X,Y), where x; € R™ and
Y is either described by a set of labels y; € X or numeric values y; € R. A space
described by n € N observations and m € N features is here referred as a (n,m)-
space, X" C X.

Assuming that data is characterized by a set of underlying stochastic regularities,
Py|y, a learning task aims to infer a model M from a (n,m)-space such that the error
over Px|y is minimized.

The M model is a composition of relations (or abstractions) from the underlying
stochastic regularities. Two major types of models can be considered.

First, supervised models, including classification models (M : X — Y, where Y=X
is a set of categoric values) and regression models (M : X — Y, with Y=R), focus
on the discriminative aspects of the conditional regularities Py|y and their error is
assessed recurring to loss functions (Toussaint 1974). Loss functions are typically
based on accuracy, area under roc-curve or sensitivity metrics for classification mod-
els, and on the normalized or root mean squared errors for regression models. In
supervised settings, there are two major types of learning paradigms with impact
on the assessment of performance: i) learning a relation from all features, including
multivariate learners based on discriminant functions (Ness and Simpson 1976), and
ii) learning a composition of relations inferred from specific subspaces X797 C X"
of interest (e.g. rule-based learners such as decision trees and Bayesian networks).
For the latter case, capturing the statistical impact of feature selection is critical
since small subspaces are highly prone to be discriminative by chance (Iswandy and
Koenig 2006).

To further clarify the impact of dimensionality when assessing the performance
of these models, consider a subset of original features, X"»? C X", and a specific
class or real interval, y € Y. Assuming that these discriminative models can be de-
composed in mapping functions of the type M : X"»? — y, comparing or bounding
the performance of these models needs to consider the fact that the (n,p)-space is not
selected aleatory. Instead, this subspace is selected as a consequence of an improved
discriminatory power. In high-dimensional spaces, it is highly probable that a small
subset of the original features is able to discriminate a class by chance. When the
statistical assessment is based on error estimates, there is a resulting high-variability
of values across estimates that needs to be considered. When the statistical assess-
ment is derived from the properties of the model, the effect of mapping the original
(n,m)-space into a (n,p)-space needs to be consider.

Second, descriptive models (|Y|=1) either globally or locally approximate Py
regularities. The error is here measured either recurring to merit functions or match
scores when there is knowledge regarding the underlying regularities. In particular,
a local descriptive model is a composition of learned relations from subspaces of
features J=X""P C X" samples I=X9™ C X"™ or both (1,J). Thus, local models
define a set of k (bi)clusters such that each (bi)cluster (I, Ji ) satisfies specific criteria
of homogeneity. Similarly to supervised models, it is important to guarantee a robust
collection and assessment of error estimates or, alternatively, that the selection of the
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(qx-pr)-space of each (bi)cluster (where g;=|I;| and py=|J;|) is statistical significant,
that is, the observed homogeneity levels for these subspaces do not occur by chance.

Consider that the asymptotic probability of misclassification of a particular
model M is given by &, and a non-biased estimator of the observed error in a
(n,m)-space is given by (&, ). The problem of computing the performance guar-
antees for a specific model M in a (n,m)-space can either be given by its perfor-
mance bounds or by the verification of its ability to perform better than other mod-
els. The task of computing the (&pin, Emax) performance bounds for a M model in a
(n,m)-space can be defined as:

[Sminagmax] :P(gmin < e(glrue) < Emax | namaM;PX|Y) =1- 53 (l)

where the performance bounds are intervals of confidence tested with 1-0 statistical
power.

The task of comparing a set of models {Mj,..,M;} in a (n,m)-space can be de-
fined as the discovery of significant differences in performance between groups of
models while controlling the family-wise error, the probability of making one or
more false comparisons among all the [ x [ comparisons.

Defining an adequate estimator of the true error 0 (&, ) for a target (n,m,M, PX‘Y)
setting is, thus, the central role of these assessments.

In literature, similar attempts have been made for testing the minimum number of
observations, by comparing the estimated error for n observations with the true error,
ming : P(60,(&rue) <E€rue | m,M,PX|Y) > 1-0 rejected at «, or by allowing relaxation
factors 6, (&;ue)<(1+ 7Y)€&rue When the observed error does not rapidly converge to
Erues 1My 00 0 (Errue) 7 Errue- In this context, the &4, can be theoretically derived
from assumptions regarding the regularity Py|y or experimentally approximated us-
ing the asymptotic behavior of learning curves estimated from data.

To illustrate the relevance of target performance bounding and comparison tasks,
let us consider the following model: a linear hyperplane M(x) in R™ defined by a
vector w and point b to either separate two classes, sign(w-x+ b), predict a real-
value, w-x+ b, or globally describe the observations, X ~ w-x+b. In contexts where
the number of features exceeds the number of observations (m > n), these models
are not able to generalize (perfect overfit towards data). As illustrated in Fig.1, a
linear hyperplane in R™ can perfectly model up to m + 1 observations, either as
classifier X — {+1}, as regression X — R or as descriptor of X. Thus, a simple
assessment of the errors of these models using the same training data would lead to
0(&ue)=0 without variance across estimates &; and, consequently, t0 €;;,=€uqx=0,
which may not be true in the presence of an additional number of observations. Also,
the performance of these models using new testing observations tends to be high-
variable. These observations should be considered when selecting the assessment
procedure, including the true error estimator 6(g,,.), the statistical tests and the
assumptions underlying data and the learning method.
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Fig. 1: Linear hyperplanes cannot generalize when dimensionality is larger than the
number of observations (data size), m > n—+1.

2 Related Work

Classic statistical methods to bound the performance of models as a function of
the data size include power calculations based on frequentist and Bayesian methods
(Adcock 1997), deviation bounds (Guyon et al. 1998), asymptotic estimates of the
true error &, (Raudys and Jain 1991; Niyogi and Girosi 1996), among others (Jain
and Chandrasekaran 1982). Here, the impact of the data size in the observed errors is
essentially dependent on the entropy associated with the target (n,m)-space. When
the goal is the comparison of multiple models, Wilcoxon signed ranks test (two
models) and the Friedman test with the corresponding post-hoc tests (more than two
models) are still state-of-the-art methods to derive comparisons either from error
estimates or from the performance distributions given by classic statistical methods
(Demsar 2006; Garcia and Herrera 2009).

To generalize the assessment of performance guarantees for an unknown sample
size n, learning curves (Mukherjee et al. 2003; Figueroa et al. 2012), theoretical
analysis (Vapnik 1998; Apolloni and Gentile 1998) and simulation studies (Hua et
al. 2005; Way et al. 2010) have been proposed. A critical problem with these latter
approaches is that they either ignore the role of dimensionality in the statistical
assessment or the impact of learning from subsets of overall features.

We have grouped these existing efforts according to six major streams of re-
search: /) classic statistics, 2) risk minimization theory, 3) learning curves, 4) sim-
ulation studies, 5) mutivariate model’s analysis, and 6) data-driven analysis. Exist-
ing approaches have their roots on, at least, one of these research streams. These
streams of research assess the performance significance of a single learning model
as a function of the available data size, which is a key factor when learning from
high-dimensional spaces. Understandably, comparing multiple models is a matter
of defining robust statistical tests from the assessed performance per model.

First, classic statistics cover a wide-range of methods. They are either centered
on power calculations (Adcock 1997) or on the asymptotic estimates of &, by us-
ing approximation theory, information theory and statistical mechanics (Raudys and
Jain 1991; Opper et al. 1990; Niyogi and Girosi 1996). Power calculations provide
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a critical view on the model errors (performance) by controlling both sample size
n and statistical power 1-v, P(60,,(&ue) < Erue)=1-Y, Where 6,,(&:,4e) can either rely
on a frequentist view, from counts to estimate the discriminative/descriptive ability
of subsets of features, or on a Bayesian view, more prone to deal with smaller and
noisy data (Adcock 1997).

Second, theoretical analysis of empirical risk minimization (Vapnik 1982; Apol-
loni and Gentile 1998). To understand the concept of risk minimization, consider
two distinct models: one simplistic model achieving good generalization but with
high observed error, and a model able to minimize the observed error but overfitted
to the available data. As illustrated in Fig.2, this analysis aims to minimize the risk
by finding an optimal trade-off between the model capacity (or complexity term)
and the observed error. Core contributions from this research stream comes from
Vapnik-Chervonenkis (VC) theory (Vapnik 1998), where the sample size and the
dimensionality is related through the VC-dimension (%), a measure of the model
capacity that defines the minimum number of observations required to generalize
the learning in a m-dimensional space. As we illustrated in Fig.1, linear hyperplanes
have h =m+ 1. The VC-dimension can be theoretically or experimentally estimated
for different models and used to compare the performance of models and approx-
imate lower-bounds. Although under this stream the target overfitting problem is
addressed, the resulting assessment tends to be conservative.

assification y regression| Etrue
model del

bound on test error... .=

€|M| capacity error

Etrain training error

VC-Dimension

Fig. 2: Capacity and training error impact on true error estimation for classification
and regression models

Third, learning curves use the observed performance of a model over a given
dataset to fit inverse power-law functions that can extrapolate performance bounds
as a function of the sample size or dimensionality (Mukherjee et al. 2003; Boonya-
nunta and Zeephongsekul 2004). An extension that weights estimations according
to their confidence has been applied for medical data (Figueroa et al. 2012). How-
ever, the estimation of learning curves in high-dimensional spaces requires large
data (n>m), which are not always available, and does not consider the variability
across error estimates.

Fourth, simulation studies infer performance guarantees by studying the impact
of multiple parameters on the learning performance (Hua et al. 2005; Way et al.
2010; Guo et al. 2010). This is commonly accomplished through the adoption of
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a large number of synthetic datasets with varying properties. Statistical assessment
and inference over the collected results can be absent. This is a typical case when
the simulation study simply aims to assess major variations of performance across
settings.

Fifth, true performance estimators can be derived from a direct analysis of the
learning models (Ness and Simpson 1976; El-Sheikh and Wacker 1980; Raudys and
Jain 1991; Raudys 1997). This stream of research is mainly driven by the assessment
of multivariate models that preserve the dimensionality of space (whether described
by the original m features or by a subset of the original features after feature se-
lection) when specific regularities underlying data are assumed. Illustrative mod-
els include classifiers based on discriminant functions, such as Euclidean, Fisher,
Quadratic or Multinomial. Unlike learning models based on tests over subsets of
features selected from the original high-dimensional space, multivariate learners
consider the values of all features. Despite the large attention given by the multi-
variate analysis community, these models only represent a small subset of overall
learning models.

Finally, model-independent size decisions derived from data regularities are re-
viewed and extended by Dobbin and Simon (2005; 2007). Data-driven formulas
are defined from a set of approximations and assumptions based on dimensional-
ity, class prevalence, standardized fold change, and on the modeling of non-trivial
sources of errors. Although dimensionality is used to affect both the testing signifi-
cance levels and the minimum number of features (i.e., the impact of selecting sub-
spaces is considered), the formulas are independent from the selected models, for-
bidding their extension for comparisons or the computation of performance bounds.

These six research streams are closely related and can be mapped through con-
cepts of information theory. In fact, an initial attempt to bridge contributions from
statistical physics, approximation theory, multivariate analysis and VC theory within
a Bayesian framework was proposed by Haussler, Kearns, and Schapire (1991).

2.1 Challenges and Contributions

Although each of the introduced research streams offer unique perspectives to solve
the target task, they suffer from drawbacks as they were originally developed with
a different goal — either minimum data size estimation or performance assessments
in spaces where n > m. These drawbacks are either related with the underlying
approximations, with the assessment of the impact of selecting subspaces (often re-
lated with a non-adequate analysis of the variance of the observed errors) or with
the poor extensibility of existing approaches towards distinct types of models or
flexible data settings. Table 1 details these drawbacks according to three major cat-
egories that define the ability to: A) rely on robust statistical assessments, B) deliver
performance guarantees from multiple flexible data settings, and C) extend the tar-
get assessment towards descriptive models, unbalanced data, and multi-parameter
settings. The latter two categories trigger the additional challenge of inferring per-
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Category Problem Description

1.

Non-robust estimators of the true performance of models. First, the probabil-
ity of selecting informative features by chance is higher in high-dimensional
spaces, leading to an heightened variability of error estimates and, in some
cases, turning inviable the inference of performance guarantees. Second, when
the number of features exceeds the number of observations, errors are prone
to systemic biases. The simple use of mean and deviation metrics from error
estimates to compare and bound the performance is insufficient in these spaces;

. Inappropriate sampling scheme for the collection of error estimates in high-

dimensional spaces (Beleites et al. 2013). Assessing the variance of estimations
within and across folds, and the impact of the number of folds and test sample
size is critical to tune the level of conservatism of performance guarantees;

. Inadequate loss functions to characterize the observed error. Examples of loss

functions of interest that are commonly ignored include sensitivity for unbal-
anced classification settings (often preferred against accuracy) or functions that
provide a decomposition of errors;

. Inadequate underlying density functions to test the significance of error es-

timates. Significance is typically assessed against very loose null settings
(Mukherjee et al. 2003), and rarely assessed over more meaningful settings.
Additionally, many of the proposed estimators are biased (Hua et al. 2005);

. Others: approximated and asymptotic error estimators derived from multivari-

ate model analysis (Raudys and Jain 1991) are only applicable for a specific
subset of learning models; model-independent methods, such as formulae-
based methods for minimum size estimation (Dobbin and Simon 2005), are
non-extensible to compare models or bound performance; performance guar-
antees provided by a theoretical analysis of the learning properties, such as in
VC-theory (Vapnik 1982), tend to be very conservative; dependency of large
datasets to collect feasible estimates (Mukherjee et al. 2003);

. Performance guarantees are commonly only assessed in the context of a spe-

cific dataset (e.g. classic statistics, learning curves), and, therefore, the implied
performance observations cannot be generalized,;

Performance comparisons and bounds are computed without assessing the reg-
ularities underlying the inputted data (Guo et al. 2010). These regularities pro-
vide a context to understand the learning challenges of the task and, thus, pro-
viding a frame to assess the significance of the scientific implications;
Contrasting with data size, dimensionality is rarely considered a variable to
compare and bound models’ performance (Jain and Chandrasekaran 1982).
Note that dimensionality m and performance 6(&;y.) are co-dependent vari-
ables as it is well-demonstrated by the VC theory (Vapnik 1998);
Independence among features is assumed in some statistical assessments. How-
ever, most of biomedical features (such as molecular units) and extracted fea-
tures from collaborative data are functionally correlated;

Non-realistic synthetic data settings. Generated data should follow properties
of real data, which is characterized by mixtures of distributions with local de-
pendencies, skewed features and varying levels of noise;

The impact of modeling additional sources of variability, such as pooling, dye-
swap samples and technical replicates for biomedical settings, is commonly
disregarded (Dobbin and Simon 2005);

2

3
A. Statistical
Robustness

4

5

1

2.

3.
B. Data
Flexibility

4.

5.

6.

1
S 2
Extensibility

4.

. Inadequate statistical assessment of models learned from datasets with height-

ened unbalance among classes and non-trivial conditional distributions Py)y,;
Weaker guidance for computing bounds for multi-class models (| Z|> 2);

. Existing methods are not extensible to assess the performance bounds of de-

scriptive models, including (single-class) global and local descriptive models;
Lack of criteria to establish performance guarantees from settings where the
impact of numerous parameters is studied (Hua et al. 2005; Way et al. 2010);

Table 1: Common challenges when defining performance guarantees of models
learned from high-dimensional data
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Approach Major Problems (non-exhaustive observations)

Originally proposed for the estimation of minimum data size and, thus, not
prepared to deliver performance guarantees; Applied in the context of a sin-
gle dataset; Impact of feature selection is not assessed; No support as-is for
descriptive tasks and hard data settings;

Bayesian &
Frequentist
Estimations

Delivery of worst-case performance guarantees; Learning aspects need to be
Theoretical carefully modeled (complexity); Guarantees are typically independent from
Methods data regularities (only the size and dimensionality of the space are considered);
No support as-is for descriptive tasks and hard data settings;

Unfeasible for small datasets or high-dimensional spaces where m>n; Dimen-
Learning sionality and the variability of errors does not explicitly affect the curves; Guar-
Curves antees suitable for a single input dataset; No support as-is for descriptive tasks
and hard data settings;

Driven by error minimization and not by the statistical significance of perfor-
mance; Data often rely on simplistic conditional regularities (optimistic data
settings); Poor guidance to derive decisions from results;

Simulation
Studies

Limited to multivariate models from discriminant functions; Different models
Multivariate require different parametric analyzes; Data often rely on simplistic conditional
Analysis regularities; No support as-is for descriptive tasks and hard data settings; Ap-
proximations can lead to loose bounds;

Not able to deliver performance guarantees (model-independent); Estimations
only robust for specific data settings; Independence among features is assumed;
Suitable for a single inputted dataset; Unfeasible for small samples;

Data-driven
Formula

Table 2: Limitations of existing approaches according to the introduced challenges

formance guarantees from multiple settings where data regularities and model pa-
rameters are varied.

Since each one of the introduced streams of research were developed with a
specific goal and under a large set of assumptions, it is natural that their limitations
fall into several of the identified categories in Table 1. In Table 2, we identify the
major problems of these streams of research when answering the target tasks.

Although the surveyed challenges are lengthy in number, many of them can be
answered recurring to contributions provided in literature. In Table 3, we describe
illustrative sets of contributions that can be used to satisfy the requirements derived
from the identified limitations. This analysis triggers the need to isolate sets of prin-
ciples per challenge and to see whether it is possible to integrate these dispersed
contributions for the development of more robust comparisons and bound estima-
tion procedures.
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Requirements

Contributions

Guarantees from
High-Variable
Performance (A.1)

Statistical tests to bound and compare performance sensitive to error distri-
butions and loss functions (Martin and Hirschberg 1996; Qin and Hotilovac
2008; Demsar 2006);

VC theory and discriminant-analysis (Vapnik 1982; Raudys and Jain 1991);
Unbiasedness principles from feature selection (Singhi and Liu 2006;
Iswandy and Koenig 2006);

Bias Effect (A.1)

Bias-Variance decomposition of the error (Domingos 2000);

Adequate Sampling
Schema (A.2)

Criteria for sampling decisions (Dougherty et al. 2010; Toussaint 1974);
Test-train splitting impact (Beleites et al. 2013; Raudys and Jain 1991);

Expressive Loss

Error views in machine learning (Glick 1978; Lissack and Fu 1976; Pa-

Functions (A.3) trikainen and Meila 2006);

Feasibility (A.4) Slgmﬁcance of estimates against baseline settings (Adcock 1997; Mukher-
jee et al. 2003);

Flexible Data Simulations with hard data assumptions: mixtures of distributions, local

Settings (B.1/4/5)

dependencies and noise (Way et al. 2010; Hua et al. 2005; Guo et al. 2010;
Madeira and Oliveira 2004);

Retrieval of Data
Regularities (B.2)

Data regularities to contextualize assessment (Dobbin and Simon 2007
Raudys and Jain 1991);

Dimensionality Extrapolate guarantees by sub-sampling features (Mukherjee et al. 2003;
Effect (B.3) Guo et al. 2010);

Advanced Data . - L . .

Propertics (B.6) Modeling of additional sources of variability (Dobbin and Simon 2005);
Unbalanced/Difficult ~ Guarantees from unbalanced data and adequate loss functions (Guo et al.
Data (C.1) 2010; Beleites et al. 2013);

Multi-class Tasks (C.2) Integration of class-centric performance bounds (Beleites et al. 2013);

Descriptive
Models (C.3)

Adequate loss functions and collection of error estimates for global and
(bi)clustering models (Madeira and Oliveira 2004; Hand 1986);

Guidance Criteria (C.4)

Weighted optimization methods for robust and compact multi-parameter
analysis (Deng 2007);

Table 3: Contributions with potential to satisfy the target set of requirements

3 Principles to Bound and Compare the Performance of Models

The solution space is proposed according to the target tasks of bounding or com-
paring the performance of a model M learned from high-dimensional spaces. The
adequate definition of estimators of the true error is the central point of focus. An
illustrative simplistic estimator of the performance of classification model can be de-
scribed by a collection of observed errors obtained under a k-fold cross-validation,
with its expected value being their average:

E[e(gtrue” ~ %Eik:l(gi ‘ M,n,m,PX|y),
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where ¢ is the observed error for the " fold. When the number of observations is
not significantly large, the errors can be collected under a leave-one-out scheme,
where k=n and the g; is, thus, simply given by a loss function L applied over a single
testing instance (x;,y;): L(M (x;)=5i,yi).

In the presence of a estimator for the true error, finding performance bounds
can rely on non-biased estimators from the collected error estimates, such as the
mean and g-percentiles to provide a bar-envelope around the mean estimator (e.g.
q€{20%,80%}). However, such strategy does not robustly consider the variability of
the observed errors. A simple and more robust alternative is to derive the confidence
intervals for the expected true performance based on the distribution underlying the
observed error estimates.

Although this estimator considers the variability across estimates, it still may not
reflect the true performance bounds of the model due to poor sampling and loss
function choices. Additionally, when the number of features exceeds the number of
observations, the collected errors can be prone to systemic biases and even statisti-
cally inviable for inferring performance guarantees. These observations need to be
carefully considered to shape the statistical assessment.

The definition of good estimators is also critical for comparing models, as these
comparisons can rely on their underlying error distributions. For this goal, either the
traditional t-Student, McNemar and Wilcoxon tests can be adopted to compare pairs
of classifiers, and Friedman tests with the corresponding post-hoc tests (Demsar
2006) or less conservative tests' (Garcia and Herrera 2009) can be adopted for either
comparing distinct models, models learned from multiple datasets or models with
different parameterizations.

Motivated by the surveyed contributions to tackle the limitations of existing ap-
proaches, this section derives a set of principles for a robust assessment of the per-
formance guarantees of models learned from high-dimensional spaces. First, these
principles are incrementally provided according to the introduced major sets of chal-
lenges. Second, we show that these principles can be consistently and coherently
combined within a simplistic assessment methodology.

3.1 Robust Statistical Assessment

Variability of Performance Estimates. Increasing the dimensionality m for a fixed
number of observations n introduces variability in the performance of the learned
model that must be incorporated in the estimation of performance bounds for a
specific sample size. A simplistic principle is to compute the confidence intervals
from error estimates {€,.., &} obtained from k train-test partitions by fitting an
underlying distribution (e.g. Gaussian) that is able to model their variance.
However, this strategy two major problems. First, it assumes that the variability
is well-measured for each error estimate. This is commonly not true as each error

! Friedman tests rely on pairwise Nemenyi tests that are conservative and, therefore, may not reveal
a significant number of differences among models (Garcia and Herrera 2009)
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estimate results from averaging a loss function across testing instances within a par-
titioning fold, which smooths and hides the true variability. Second, when the vari-
ance across estimates is substantially high, the resulting bounds and comparisons
between models are not meaningful. Thus, four additional strategies derived from
existing research are proposed: one for robust assessments for models that preserve
the original dimensionality, another for correcting performance guarantees for mod-
els that rely on subspaces of the original space, a third strategy to reduce variability
in m > n settings, and a final strategy for obtaining more conservative guarantees.

First, the discriminant properties of multivariate models learned over the orig-
inal space can be used to approximate the observed error for a particular setting
6(&rue | m, M, Pyy) and the asymptotic estimate of the true error limy ;e 6, (& e |
m, M, Px|y) (Ness and Simpson 1976). An analysis on the deviations of the observed
error from the true error as a function of data size n, dimensionality m and discrimi-
nant functions M was initially provided by Raudys and Jain (1991) and extended by
more recent approaches (Biihlmann and Geer 2011; Cai and Shen 2010).

Second, the unbiasedness principle from feature selection methods can be adopted
to affect the significance of performance guarantees. Learning models M that rely
on decisions over subsets of features either implicitly or explicitly use a form of fea-
ture selection driven by core metrics, such as Mahalanobis, Bhattacharyya, Patrick-
Fisher, Matusita, divergence, mutual Shannon information, and entropy. In this con-
text, statistical tests can be made to guarantee that the value of a given metric per
feature is sufficiently better than a random distribution of values when considering
the original dimensionality (Singhi and Liu 2006; Iswandy and Koenig 2006). These
tests return a p-value that can be used to weight the probability of the selected set of
features being selected by chance over the (n,m)-space and, consequently, to affect
the performance bounds and the confidence of comparisons of the target models.
Singhi and Liu (2006) formalize selection bias, analyze its statistical properties and
how they impact performance bounds.

Third, when error estimates are collected, different methods have been pro-
posed for controlling the observed variability across estimates (Raeder, Hoens, and
Chawla 2010; Jain et al. 2003), ranging from general principles related with sam-
pling schema and density functions to more specific statistical tests for a correct
assessment of the true variability in specific biomedical settings where, for instance,
replicates are considered. These options are revised in detail in the next subsections.

Fourth, conservative bounds for a given dimensionality can be retrieved from
the VC-dimension (capacity) of a target model (Vapnik 1982; Blumer et al. 1989).
These bounds can be used to guide model comparison. The VC-dimension can be
obtained either theoretically or experimentally (Vayatis and Azencott 1999). A com-
mon experimental estimation option for the VC-dimension is to study the maxi-
mum deviation of error rates among independently labeled datasets. An illustrative
lower-bound for the estimator of the true performance of a M model composed
by & mapping functions (number of decisions from the values of m features) is:
0, (&rue) > l(log% + logh) (Apolloni and Gentile 1998), where § is the statistical

— n
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power?. In high-dimensional spaces, & tends to be larger, which can degrade perfor-
mance bounds if the number of instances is small. For more complex models, such
as Bayesian learners or decision trees, the VC-dimension can be adopted using as-
sumptions that lead to less conservative bounds® (Apolloni and Gentile 1998). Still
bounds tend to be loose as they are obtained using a data-independent analysis and
rely on a substantial number of approximations.

Bias associated with High-Dimensional Spaces. In (n,m)-spaces where n < m,
the observed error associated with a particular model can be further decomposed
in bias and variance components to understand the major cause of the variability
across error estimates. While variance is determined by the ability to generalize
a model from the available observations (see Fig.2), the bias is mainly driven by
the complexity of the learning task from the available observations. High levels
of bias are often found when the collection of instances is selected from a specific
stratum, common in high-dimensional data derived from social networks, or affected
by specific experimental or pre-processing techniques, common in biomedical data.
For this reason, the bias-variance decomposition of error provides useful frame to
study the error performance of a classification or regression model, as it is well
demonstrated by its effectiveness across multiple applications (Domingos 2000). To
this end, multiple metrics and sampling schemes have been developed for estimating
bias and variance from data, including the widely employed holdout approach of
Kohavi and Wolpert (Kohavi and Wolpert 1996).

Sampling Schema. When the estimator of the true performance estimator is not
derived from the analysis of the parameters of the learned model, it needs to rely on
samples from the original dataset to collect estimates. Sampling schema are defined
by two major variables: sampling criteria and train-test size decisions. Error estima-
tions in high-dimensional data strongly depend on the adopted resampling method
(Way et al. 2010). Many principles for the selection of sampling methods have been
proposed (Molinaro, Simon, and Pfeiffer 2005; Dougherty et al. 2010; Toussaint
1974). Cross-validation methods and alternative bootstrap methods (e.g. random-
ized bootstrap, 0.632 estimator, mc-estimator, complex bootstrap) have been com-
pared and assessed for a large number of contexts. Unlike cross-validation, boot-
strap was shown to be pessimistically biased with respect to the number of training
samples. Still, studies show that bootstrap becomes more accurate than its peers for
space with very large observed errors as often observed in high-dimensional spaces
where m > n (Dougherty et al. 2010). Resubstitution methods are optimistically bi-
ased and should be avoided. We consider both the use of k-folds cross-validation
and bootstrap to be acceptable. In particular, the number of folds, &, can be adjusted
based on the minimum number of estimates for a statistical robust assessment of
confidence intervals. This implies a preference for a large number of folds in high-
dimensional spaces with either high-variable performance or n < m.

2 Inferred from the probability P(&:.. | M,m,n) to be consistent across the n observations.

3 The number and length of subsets of features can be used to affect the performance guarantees.
For instance, a lower-bound on the performance of decision lists relying on tests with at most p
features chosen from a m-dimensional space and d-depth is 0 (&) > 1 (log% +0(plogp?)).

— n



Title Suppressed Due to Excessive Length 15

An additional problem when assessing performance guarantees in (n,m)-spaces
where n < m, is to guarantee that the number of test instances per fold offers a reli-
able error estimate since the observed errors within a specific fold are also subjected
to systematic (bias) and random (variance) uncertainty. Two options can be adopted
to minimize this problem. First option is to find the best train-test split. Raudys
and Jain (1991) propose a loss function to find a reasonable size of the test sample
based on the train sample size and on the estimate of the asymptotic error, which
essentially depends on the dimensionality of the dataset and on the properties of the
learned model M. A second option is to model the testing sample size independently
from the number of training instances. This guarantees a robust performance assess-
ment of the model, but the required number of testing instances can jeopardize the
sample size and, thus, compromise the learning task. Error assessments are usually
described as Bernoulli process: n;.s instances are tested, ¢ successes (or failures) are
observed and the true performance for a specific fold can be estimated, p=t/n;.,
as well as its variance p(1-p)/ny.s. The estimation of n. can rely on confidence
intervals for the true probability p under a pre-specified precision* (Beleites et al.
2013) or from the expected levels of type I and II errors using the statistical tests
described by Fleiss (1981).

Loss Functions. Different loss functions capture different performance views,
which can result in radically different observed errors, {€|, ...& }. Three major views
can be distinguish to compute each one of these errors for a particular fold from
these loss functions. First, error counting, the commonly adopted view, is the rela-
tive number of incorrectly classified/predicted/described testing instances. Second,
smooth modification of error counting (Glick 1978) uses distance intervals, and it is
applicable for classification models with probabilistic outputs (correctly classified
instances can contribute to the error) and for regression models. Finally, posterior
probability estimate (Lissack and Fu 1976) is often adequate in the presence of
the class-conditional distributions. These two latter metrics provide a critical com-
plementary view for models that deliver probabilistic outputs. Additionally, their
variance is more realistic than the simple error counting. The problem with smooth
modification is its dependence on the error distance function, while posterior prob-
abilities tend to be biased for small datasets.

Although error counting (and the two additional views) are commonly parame-
terized with an accuracy-based loss function (incorrectly classified instances), other
metrics can be adopted to turn the analysis more expressive or to be extensible
towards regression models and descriptive models. For settings where the use of
confusion matrices is of importance due to the difficulty of the task for some
classes/ranges of values, the observed errors can be further decomposed according
to type-I and type-1II errors.

4 For some biomedical experiments (Beleites et al. 2013), 75-100 test samples are commonly
necessary to achieve reasonable validation and 140 test samples (confidence interval widths 0.1)
are necessary for an expected sensitivity of 90%. When this number is considerably higher than the
number of available observations, there is the need to post-calibrate the test-train sizes according
to the strategies depicted for the first option.
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Model Performance views

accuracy (percentage of samples correctly classified); area under receiver operating
Classification characteristics curve (AUC); critical complementary performance views can be de-
model rived from (multi-class) confusion matrices, including sensitivity, specificity and the
F-Measure;

simple, average normalized or relative root mean squared error; to draw comparisons

ﬁegijr:; SO with literature results, we suggest the use of the normalized root mean squared error
(NRMSE) and the symmetric mean absolute percentage of error (SMAPE);
entropy, F-measure and match score clustering metrics (Assent et al. 2007; Sequeira
and Zaki 2005); F-measure can be further decomposed in terms of recall (coverage
L of found samples by a hidden cluster) and precision (absence of samples present
Descriptive

in other hidden clusters); match scores (Preli¢ et al. 2006) assess the similarity of
solutions based on the Jaccard index; Hochreiter et al. (2010) introduced a consensus
score by computing similarities between all pairs of biclusters; biclustering metrics
can be delivered by the application of a clustering metric on both dimensions or by
the relative non-intersecting area (RNAI) (Bozdag, Kumar, and Catalyurek 2010;
Patrikainen and Meila 2006);

Local model
(presence of
hidden bics.)

merit functions can be adopted as long as they are not biased towards the merit crite-
ria used within the approaches under comparison (mean squared residue introduced
by Cheng and Church (2000) or the Pearson’s correlation coefficent; domain-specific
evaluations can be adopted by computing statistical enrichment p-values (Madeira
and Oliveira 2004);

Descriptive

Local model
(absence of
hidden bics.)

merit functions to test the fit in the absence of knowledge regarding the regularities;
equality tests between multivariate distributions; similarity functions between the
observed and approximated distributions;

Descriptive
Global model

Table 4: Performance views to estimate the true error of discriminative and descrip-
tive models

A synthesis of the most common performance metrics per type of model is pro-
vided in Table 4. A detailed analysis of these metrics is provided in Section 3.3
related with extensibility principles. In particular, in this section we explain how to
derive error estimates from descriptive settings.

The use of complementary loss functions for the original task (Eq.1) is easily
supported by computing performance guarantees multiple times, each time using a
different loss function to obtain the error estimates.

Feasibility of Estimates. As previously prompted, different estimators of the true
error can be defined to find confidence intervals or significant differences associ-
ated with the performance of a specific model M. For this goal, we covered how to
derive estimators from the parametric analysis of the learned models or from error
estimates gathered under a specific sampling scheme and loss function. Neverthe-
less, the performance guarantees defined by these estimators are only valid if they
are able to perform better than a null (random) model under a reasonable statisti-
cal significance level. An analysis of the significance of these estimators indicates
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whether we can estimate the performance guarantees of a model or, otherwise, we
would need a larger number of observations for the target dimensionality.

A simplistic validation option is to show the significant superiority of M against
permutations made on the original dataset (Mukherjee et al. 2003). A possible per-
mutation procedure is to construct for each of the & folds, r samples where the classes
(discriminative models) or domain values (descriptive models) are randomly per-
muted. From the errors computed for each permutation, different density functions
can be developed, such as:

Pn,m(x) = %Eikzlzj‘zl e(x - 8i,j7n,m)7 2)
where 0(z) = 1 if z > 0 and 0 otherwise. The significance of the model is P, ,,(x),
the percentage of random permutations with observed error smaller than x, where x
can be fixed using a estimator of the true error for the target model M. The average
estimator, &, = + XX (& | n,m), or the 6" percentile of the sequence {ey, ..., e;}
can be used as an estimate of the true error. Both the average and 6" percentile of
error estimates are unbiased estimators. Different percentiles can be used to define
error bar envelopes for the true error.

There are two major problems with this approach. First, variability of the ob-
served errors does not affect the significance levels. To account for the variability
of error estimates across the kx¢ permutations, more robust statistical tests can be
used, such as one-tailed t-test with (kxt)-1 degrees of freedom to test the unilateral
superiority of the target model. Second, the significance of the learned relations of
amodel M is assessed against permuted data, which is a very loose setting. Instead,
the same model should be assessed against data generated with similar global reg-
ularities in order to guarantee that the observed superiority does not simply result
from an overfitting towards the available observations. Similarly, stastical t-tests are
suitable options for this scenario.

When this analysis reveals that error estimates cannot be collected with statistical
significance due to data size constraints, two additional strategies can be applied. A
first strategy it to adopt complementary datasets by either: /) relying on identical
real data with more samples (note, however, that distinct datasets can lead to quite
different performance guarantees (ibid.)), or by 2) approximating the regularities
of the original dataset and to generated larger synthetic data using the retrieved
distributions. A second strategy is to relax the significance levels for the inference
of less conservative performance guarantees. In this case, results should be provided
as indicative and exploratory.

3.2 Data Flexibility

Deriving performance guarantees from a single dataset is of limited interest. Even
in the context of a specific domain, the assessment of models from multiple datasets
with varying regularities of interest provides a more complete and generalize frame
to validate their performance. However, in the absence of other principles, the adop-
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tion of multiple datasets leads to multiple, and potentially contradicting, perfor-
mance guarantees. Principles for the generalization of performance bounds and
comparisons retrieved from distinct datasets are proposed in Section 3.4.

When real datasets are adopted, their regularities should be retrieved for a more
informative context of the outputted performance guarantees. For this goal, distri-
bution tests (with parameters estimated from the observed data) to discover global
regularities, biclustering approaches to identify (and smooth) meaningful local cor-
relations, and model reduction transformations to detect (and remove) redundancies
(Hocking 2005) can be adopted. When the target real datasets are sufficiently large,
size and dimensionality can be varied to approximate learning curves or to simply
deliver performance bounds and comparisons for multiple (n,m)-spaces. Since per-
formance bounds and comparisons for the same (n,m)-space can vary with the type
of data®, it is advisable to only combine estimates from datasets that share similar
conditional regularities Py)y.

In simulation studies, synthetic datasets should be generated using realistic regu-
larities. Common distribution assumptions include either single or multiple mul-
tivariate Gaussian distributions (Way et al. 2010; Guo et al. 2010; Hua et al.
2005; El-Sheikh and Wacker 1980), respectively, for descriptive (M (X)) or dis-
criminative models (M : X — Y). In classification settings, it is common to as-
sume unequal means and equal covariance matrices (X; | y; ~ Gaussian(u,06?),
X; | y2 ~ Gaussian(li,6%), where [ # ). The covariance-matrix can be experi-
mentally varied or estimated from real biomedical datasets. In (Way et al. 2010), un-
equal covariance matrices that differ by a scaling factor are considered. While a few
datasets after proper normalization have a reasonable fit, the majority of biomedi-
cal datasets cannot be described by such simplistic assumption. In these cases, the
use of mixtures, such as the mixture of the target distribution with Boolean fea-
ture spaces (Kohavi and John 1997), is also critical to assess non-linear capabilities
of the target models. Hua et al. (2005) proposes a hard bimodal model, where the
conditional distribution for class y; is a Gaussian centered at py=(0,...,0) and the
conditional distribution for class y, is a mixture of equiprobable Gaussians cen-
tered at Uy o=(1,...,1) and yy 1=(-1,...,-1). In Guo et al. (2010) study, the complexity
of Gaussian conditional distributions was tested by fixing tp=0 and by varying
from 0.5 to O in steps of 0.05 for Gg = 612 = 0.2. Additionally, one experimental
setting generated data according to a mixture of Uniform U (y + 30,1 +6.76) and
Gaussian N(u, 62) distributions.

Despite these flexible data assumptions, some datasets have features exhibiting
highly skewed distributions. This is a common case with molecular data (particu-
larly from human tissues). The Guo et al. study introduces varying levels of signal-
to-noise in the dataset, which resulted in a critical decrease of the observed statistical
power for the computed bounds (ibid.). Additionally, only a subset of overall fea-

5 The comparison of performance of models can be directly learned from multiple datasets using
the introduced Friedman framework based on Nemenyi tests (Demsar 2006).

6 Distinct datasets with identical (n,m)-spaces can have significantly different learning complexi-
ties (Mukherjee et al. 2003).
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tures was generated according class-conditional distributions in order to simulate
the commonly observed compact set of discriminative biomarker features.

The majority of real-world data settings is also characterized by functionally cor-
related features and, therefore, planting different forms of dependencies among the
m target features is of critical importance to infer performance guarantees. Hua et
al. (2005) proposes the use of different covariance-matrices by dividing the overall
features into correlated subsets with varying number of features (p € {1,5,10,30}),
and by considering different correlation coefficients (p € {0.125,0.25,0.5}). The
increase in correlation among features, either by decreasing g or increasing p, in-
creases the Bayes error for a fixed dimensionality. Guo et al. (2010) incorporates a
correlation factor just for a small portion of the original features. Other studies offer
additional conditional distributions tested using unequal covariance matrices (Way
et al. 2010). Finally, biclusters can be planted in data to capture flexible functional
relations among subsets of features and observations. Such local dependencies are
commonly observed in biomedical data (Madeira and Oliveira 2004).

Additional sources of variability can be present, including technical biases from
the collected sample of instances or replicates, pooling and dye-swaps in biologi-
cal data. This knowledge can be used to shape the estimators of the true error or to
further generate new synthetic data settings. Dobbin and Simon work (Dobbin and
Simon 2005; Dobbin and Simon 2007) explore how such additional sources of vari-
ability impact the observed errors. The variability added by these factors is estimated
from the available data. These factors are modeled for both discriminative (multi-
class) and descriptive (single-class) settings where the number of independent obser-
vations is often small. Formulas are defined for each setting by minimizing the dif-
ference between the asymptotic and observed error, (limy—e & uejn) = Erue|n> Where
€rueln depends on these sources of variability. Although this work provides hints
on how to address advanced data aspects with impact on the estimation of the true
error, the proposed formulas provide loose bounds and have been only deduced in
the the scope of biological data under the independence assumption among features.
The variation of statistical power using ANOVA methods has been also proposed to
assess these effects on the performance of models (Surendiran and Vadivel 2011).

Synthesizing, flexible data assumptions allow the definition of more general,
complete and robust performance guarantees. Beyond varying the size n and di-
mensionality m, we can isolate six major principles. First, assessing models learned
from real and synthetic datasets with disclosed regularities provide complementary
views for robust and framed performance guarantees. Second, when adopting mul-
tivariate Gaussian distributions to generate data, one should adopt varying distances
between their means, use covariance-matrices characterized by varying number of
features and correlation factors, and rely on mixtures to test non-linear learning
properties. Non-Gaussian distributions can be complementary considered. Third,
varying degrees of noise should be planted by, for instance, selecting a percentage
of features with skewed values. Fourth, impact of selecting a subset of overall fea-
tures with more discriminative potential (e.g. lower variances) should be assessed.
Fifth, other properties can be explored, such as the planting of local regularities with
different properties to assess the performance guarantees of descriptive models and
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the creation of imbalance between classes to assess classification models. Finally,
additional sources variability related with the specificities of the domains of interest
can be simulated for context-dependent estimations of performance guarantees.

3.3 Extensibility

Performance Guarantees from Unbalanced Data Settings. Imbalance in the rep-
resentativity of classes (classification models), range of values (regression models)
and among feature distributions affect the performance of models and, consequently,
the resulting performance guarantees. In many high-dimensional contexts, such as
biomedical labeled data, case and control classes tend to be significantly unbalanced
(access to rare conditions or diseases is scarce). In these contexts, it is important
to compute performance guarantees in (n,m)-spaces from unbalanced real data or
from synthetic data with varying degrees of imbalance. Under such analysis, we
can frame the performance guarantees of a specific model M with more rigor. Simi-
larly, for multi-class tasks, performance guarantees can be derived from real datasets
and/or synthetic datasets (generated with a varying number and imbalance among
the classes) to frame the true performance of a target model M.

Additionally, an adequate selection of loss functions to compute the observed
errors is required for these settings. Assuming the presence of c¢ classes, one strategy
is to estimate performance bounds c times, where each time the bounds are driven by
a loss function based on the sensitivity of that particular class. The overall upper and
lower bounds across the ¢ estimations can be outputted. Such illustrative method is
critical to guarantee the robustness assessment of the performance of classification
models for each class.

Performance Guarantees of Descriptive Models. The introduced assessment prin-
ciples to derive performance guarantees of discriminative models are applicable to
descriptive models under a small set of assumptions. Local and global descriptive
models can be easily adopted when considering one of the loss functions proposed
in Table 4. The evaluation of local descriptive models can either be made in the
presence or absence of hidden (or planted) (bi)clusters, H. Similarly, global descrip-
tive models that return a mixture of distributions that approximate the population
from which the sample was retrieved, X ~ 7, can be evaluated in the presence and
absence of the underlying true regularities.

However, both descriptive and global models cannot rely on traditional sampling
schema to collect error estimates. Therefore, in order to have multiple error esti-
mates for a particular (n,m)-space, which is required for a robust statistical assess-
ment, these estimates should be computed from:

e alternative subsamples of a particular dataset (testing instances are discarded);
e multiple synthetic datasets with fixed number of observations n and features m
generated under similar regularities.
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3.4 Inferring Performance Guarantees from Multiple Settings

In previous sections, we have been proposing alternative estimators of the true per-
formance, and the use of datasets with varying regularities. Additionally, the per-
formance of learning methods can significantly vary depending on their parameter-
izations. Some of the variables that can be subject to variation include: data size,
data dimensionality, loss function, sampling scheme, model parameters, distribu-
tions underlying data, discriminative and skewed subsets of features, local corre-
lations, degree of noise, among others. Understandably, the multiplicity of views
related with different estimators, parameters and datasets results in a large number
of performance bounds and comparison-relations that can hamper the assessment of
a target model. Thus, inferring more general performance guarantees is critical and
valid for studies that either derive specific performance guarantees from collections
of error estimates or from the direct analysis of the learned models.

Guiding criteria needs to be considered to frame the performance guarantees of
a particular model M based on the combinatorial explosion of hyper-surfaces that
assess performance guarantees from these parameters. When comparing models,
simple statistics and hierarchical presentation of the inferred relations can be avail-
able. An illustrative example is the delivery of the most significant pairs of values
that capture the percentage of settings where a particular model had a superior and
inferior performance against another model.

When bounding performance, a simple strategy is to use the minimum and max-
imum values over similar settings to define conservative lower and upper bounds.
More robustly, error estimates can be gathered for the definition of more general
confidence intervals. Other criteria based on weighted functions can be used to
frame the bounds from estimates gathered from multiple estimations (Deng 2007).
In order to avoid very distinct levels of difficulty across settings that penalized the
inferred performance bounds, either a default parameterization can be made for all
the variables and only one variable be tested at a time or distinct settings can be
clustered leading to a compact set of performance bounds.

3.5 Integrating the Proposed Principles

The retrieved principles can be consistently and coherently combined according to
a simple methodology to enhance the assessment of the performance guarantees
of models learned from high-dimensional spaces. First, the decisions related with
the definition of the estimators, including the selection of adequate loss functions
and sampling scheme and the tests of the feasibility of error estimates, provide a
structural basis to bound and compare the performance of models.

Second, to avoid biased performance guarantees towards a single dataset, we pro-
pose the estimation of these bounds against synthetic datasets with varying proper-
ties. In this context, we can easily evaluate the impact of assuming varying regulari-
ties X|Y, planting feature dependencies, dealing with different sources of variability,
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and of creating imbalance for discriminative models. Since the result of varying a
large number of parameters can result in large number of estimations, the identified
strategies to deal with the inference of performance guarantees from multiple set-
tings should be adopted in order to collapse these estimations into a compact frame
of performance guarantees.

Third, in the presence of a model that is able to preserve the original space (e.g.
support vector machines, global descriptors, discriminant multivariate models), the
impact of dimensionality in the performance guarantees is present by default, and
it can be further understood by varying the number of features. For models that
rely on subsets of overall features, as the variability of the error estimates may not
reflect the true performance, performance guarantees should be adjusted through
the unbiasedness principle of feature selection or conservative estimations should
be considered recurring to VC-theory.

Finally, for both of these models, the estimator of the true performance should be
further decomposed to account for the both the bias and variance underlying error
estimates. When performance is highly-variable (loose performance guarantees),
this decomposition offers an informative context to understand how the model is
able to deal with the risk of overfitting associated with high-dimensional spaces.

4 Results and Discussion

In this section we experimentally assess the relevance of the proposed methodol-
ogy. First, we compare alternative estimators and provide initial evidence for the
need to consider the proposed principles when assessing performance over high-
dimensional datasets when n<m. Second, we bound and compare the performance
of classification models learned over datasets with varying properties. Finally, we
show the importance of adopting alternative loss functions for unbalanced multi-
class and single-class (descriptive) models.

For these experiments, we rely on both real and synthetic data. Two distinct
groups of real-world datasets were used: high-dimensional datasets with small num-
ber of instances (n<<m) and high-dimensional datasets with a large number of in-
stances. For the first group we adopted microarrays for tumor classification col-
lected from BIGS repository7: colon cancer data (m=2000, n=62, 2 labels), lym-
phoma data (m=4026, n=96, 9 labels), and leukemia data (m=7129, n=72, 2 labels).
For the second group we selected a random population from the healthcare heritage
prize database® (m=478, n=20000) which integrates claims across hospitals, phar-
macies and laboratories. The original relational scheme was denormalized by map-
ping each patient as an instance with features extracted from the collected claims
(400 attributes), the monthly laboratory tests and taken drugs (72 attributes), and the
patient profile (6 attributes). We selected the tasks of classifying the need for upcom-

7 http://www.upo.es/eps/bigs/datasets.html
8 http://www.heritagehealthprize.com/c/hhp/data (under a granted permission)
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ing interventions (2 labels) and the level of drug prescription ({low,moderate,high}
labels), considered to be critical tasks for care prevention and drug management.

Two groups of synthetic datasets were generated: multi-label datasets for dis-
criminative models and unlabeled datasets for descriptive models. The labeled
datasets were obtained by varying the following parameters: the ratio and the size
of the number of observations and features, the number of classes and their imbal-
ance, the conditional distributions (mixture of Gaussians and Poissons per class),
the amount of planted noise, the percentage of skewed features, and the area of
planted local dependencies. The adopted parameterizations are illustrated in Table 5.
To study the properties of local descriptive models, synthetic datasets with varying
number and shape of planted biclusters were generated. These settings, described in
Table 6, were carefully chosen in order to follow the properties of molecular data
(Serin and Vingron 2011; Okada, Fujibuchi, and Horton 2007). In particular, we var-
ied the size of these matrices up to m=4000 and n=400, maintaining the proportion
between rows and columns commonly observed in gene expression data.

Features m € {500, 1000,2000, 5000}
Observations n € {100,200, 500, 1000, 10000}
Number of Classes ce€{2,3,5}

(c=3) {N(1,6), N(0,0), N(-1,6)} with & € {3,5} (easy setting)
Distributions (illustrative)  (c=3) {N(u;,0),N(0,0),N(u3,0)} with u;e{-1,2}, un€{-2,1}}
(c=3) mixtures of N(u;,0) and P(A;) where A;=4, 1,=5, A3=6

Noise (% of values’ range) {0%,5%,10%,20%,40% }

Skewed Features {0%,30%,60%,90% }

Degree of Imbalance (%)  {0%,40%,60%,80% }

Table 5: Parameters for the generation of the labeled synthetic datasets

Features x Observations (fmx ffn) 100x30  500x60 1000 100 2000x200 4000 x400

Nr. of hidden biclusters 3 5 10 15 20

Nr. columns in biclusters [5,7] [6,8] [6,10] [6,14] [6,20]
Nr. rows in biclusters [10,20]  [15,30] [20,40] [40,70]  [60,100]
Area of biclusters 9.0% 2.6% 2.4% 2.1% 1.3%

Table 6: Properties of the generated set of unlabeled synthetic datasets

The software implementing the methodology that combines the introduced prin-
ciples was codified in Java (JVM version 1.6.0-24). The selected supervised learners
were adopted from WEKA. The following experiments were computed using an In-
tel Core i3 1.80GHz with 6GB of RAM.
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Challenges. An initial assessment of the performance of two simplistic classifi-
cation models learned from real high-dimensional datasets is given in Fig.3. The
performance bounds® from real datasets where m>n confirm the high-variability of
performance associated with the learning in these spaces. In particular, the differ-
ence between the upper and lower bounds is over 30% for cross-validation options
with 10 folds and n folds (leave-one-out). Generally, leave-one-out sampling scheme
has higher variability than 10-fold cross-validation. Although leave-one-out is able
to learn from more observations (decreasing the variability of performance), the true
variability of 10-fold cross-validation is masked by averaging errors per fold. The
smooth effect of cross-validation sampling supports the need to increase the levels
of significance to derive more realistic performance bounds. Additionally, the use
of bootstrap schema with resampling methods to increase the number of instances
seems to optimistically bias the true performance of the models. Contrasting with
these datasets, models learned from the heritage data setting, where n>>m, have a
more stable performance across folds. This leads to a higher number and signifi-
cance of the superiority comparisons among classification models collected from
Friedman tests.

Bounding performance using VC inference or specific percentiles of error es-
timates introduces undesirable bias. In fact, under similar experimental settings,
the VC bounds were very pessimistic (>10 percentage points of difference), while
the use of the 0.15 and 0.85 percentiles (to respectively define lower and upper
bounds) led to more optimistic bounds against the bounds provided in Fig.3. Al-
though changing percentiles easily allows to tune the target level of conservatism,
they do not capture the variability of the error estimates.

score Performance Bounds (impact of sampling options)

1
0.75 T T m T Elo0-foldCV
os || || i | Oleave-one-out
) W Bootstran w/
Replacement
0.25 N i i n

C45 MziveBayes C45 MaiveBayes C45 MziveBayes 45 MziveBayes

Colon Lymphoma Leukemia Heritage

Fig. 3: Performance guarantees from real datasets with varying ;- degree for two
classifiers tested under different sampling options.

A set of views on the significance of the learned relations from real and synthetic
high-dimensional datasets is respectively provided in Table 7 and Fig.4. Different
methods were adopted to compute the significance (p-value) associated with a col-
lection of error estimates. These methods basically compute a p-value by compar-
ing the collected error estimates against estimates provided by loose settings where:

° Confidence intervals of a mean estimator from the sample of error estimates assumed to be
normally distributed with the same expectation mean, a standard error % and significance o=0.05.
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1) the target model is learned from permuted data, 2) a null classifier'? is learned
from the original data, and 3) the target model is learned from null data (preser-
vation of global conditional regularities). We also considered the setting proposed
by Mukherjee et al. (2003) (Eq.2). Comparisons are given by one-tailed ¢-tests. For
this analysis, we compared the significance of the learned C4.5, Naive Bayes and
support vector machines (SVM) models for real datasets and averaged their values
for synthetic datasets. A major observation can be retrieved: p-values are not highly
significant (<1%) when n<m, meaning that the performance of the learned models
is not significantly better than very loose learners. Again, this observation under-
lines the importance of carefully framing assessments of models learned from high-
dimensional spaces. Additionally, different significance views can result in quite
different p-values, which stresses the need to choose an appropriate robust basis to
validate the collected estimates. Comparison against null data is the most conserva-
tive, while the counts performed under Eq.2 (permutations density function) are not
sensitive to distances among error mismatches and easily lead to biased results.

Colon Leukemia Heritage
C4.5 NBayes SVM C4.5 NBayes SVM C4.5 NBayes SVM

Comparison Against Permutated Data 1.5% 41.3% 1.2% 0.6% 0.1% 0.2% ~0% ~0%  ~0%
Comparison Against Null Model 1.1%  322% 12% 01% 0.1% 0.1% ~0% ~0%  ~0%
Comparison Against Null Dataset 152% 60.3% 9.3% 9.7% 12.0% 7.2% 1.3% 3.8% 1.7%
Permutations Density Function (Eq.2) 14.0% 36.0% 8.4% 84% 12% 0.8% 0.0% 0.4%  0.0%

Table 7: Significance of the collected error estimates of models learned from real
datasets using improvement p-values. p-values are computed by comparing the tar-
get models vs. a baseline classification models, and error estimates collected from
the original dataset vs. a permuted dataset or null dataset (where basic regularities
are preserved).

Significance of Performance Results
p-value g P-Value Comparison Magainst

05 M’ learned from Permutated Data

04 P-Value Comparison Magainst
03 MNull Learning Model h'
02 P-Value Permutations Density Function
01 4 e N[ Ui, 0=3)
[u] = o= = N(ui,0=5)

100x1000 200x1000 400x1000 1000x1000 synthetic
data (mm)
Fig. 4: Significance views on the error estimates collected by classification models
from m>n synthetic datasets under easy N(#;,6=3) and moderate N(u;,0=5) settings
against loose baseline settings.

10 A classifier that defines the average conditional values per feature during the training phase and
the mode of feature-based classes during the testing phase was considered.
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To further understand the root of the variability associated with the performance
of models learned from high-dimensional datasets, Fig.5 provides its decomposi-
tion in two components: bias and variance. Bias provides a view on how the ex-
pected error deviates across folds for the target dataset. Variance provides a view
on how the model behavior differs across distinct training folds. We can observe
that the bias component is higher than the variance component, which is partly
explained by the natural biased incurred from samples in n<m high-dimensional
spaces. The disclosed variance is associated with the natural overfitting of the mod-
els in these spaces. Interestingly, we observe that the higher 7 ratio is, the higher the
bias/variance ratio. The sum of these components decrease for an increased number
of observations, n, and it also depends on the nature of the conditional distribu-
tions of the dataset, as it is shown by the adoption of synthetic datasets with condi-
tional Gaussian distributions with small-to-large overlapping areas under the density
curve. The focus on each one of these components for the inference of novel per-
formance guarantees is critical to study the impact of the capacity error and training
error associated with the learned model (see Fig.2).

Bias-Variance Decompaosition

02 03
W Colon —\iariance (o=3)
015 —
O Lymphoma 02 ‘--....,_‘__-_‘___- = Bias (0=3)
ot B Leukemia 01 == = o === \ariance (o=5)
0.05 ) i i = == Bias (0=5)
O Heritage
0 0 ' ' ' ; synthetic
Bias Variance 100x1000 200x1000 400x1000 10001000 data (rmxm)

Fig. 5: Decomposition of the performance variability from real and synthetic data
(see Table 5) using C4.5: understanding the model capacity (variance component)
and the model error (bias component).

Unbalanced Multi-class Data. The importance of selecting adequate performance
views to retrieve realistic guarantees is shown in Fig.6. This is still an underesti-
mated problem that needs to be addressed for both: /) balanced datasets where the
class-conditional distributions differs in complexity (see the sensitivity associated
with the classes from Colon and Leukemia datasets in Fig.6a), and 2) for unbal-
anced datasets, where the representativity of each class can hamper the learning
task even if the complexity of the class-conditional distributions is similar (see the
sensitivity of the classes from datasets with different degrees of imbalance Fig.6b).
In this analysis, we adopted sensitivity as a simplistic motivational metric, however
many other loss functions hold intrinsic properties of interest to derive particular
implications from the performance of the target models. Table 4 synthesizes some
of the most common performance views. The chosen view not only impacts the ex-
pected true error, but the variability of the error as it is well-demonstrated in Fig.6a.
This impacts both the inferred bounds and the number of significant comparisons.
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Loss Functions Impact

score a. Peformance Bounds from Real Data score D Average Peformance over Synthetic Data
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1
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Fig. 6: Impact of adopting alternative loss functions on the: a) performance vari-
ability of real datasets, and b) true performance of synthetic datasets (n=200 and
m=500) with varying degrees of imbalance among classes.

Performance Guarantees from Flexible Data Settings. To understand how per-
formance guarantees varies across different data settings for a specific model, we
computed C4.5 performance bounds from synthetic datasets with varying degree of
planted noise and skewed features. Inferring performance guarantees across settings
is important to derive more general implications on the performance of models. This
analysis is provided in Fig.7. Generalizing performance bounds from datasets with
different learning complexity may result in very loose bounds and, therefore, should
be avoided. In fact, planting noise and skewing features not only increases the ex-
pected error but also its variance. Still, some generalizations are possible when the
differences between collections of error estimates is not high. In these cases, collec-
tions of error estimates can be joint for the computation of new confidence intervals
(as the ones provided in Fig.7). When the goal is to compare sets of models, supe-
riority relations can be tested for each setting under relaxed significance levels, and
outputted if the same relation appears across all settings. In our experimental study
we were only able to retrieve a small set of superiority relations between C4.5 and
Naive Bayes using the Friedman-test under loose levels of significance (10%).

Performance Bounds Inference
accuracy from Flexible Data Settings
0.0

0.60

B Easy Setting
0.40 @ Moderate Setting
0.20 O Hard Setting
0.00 T T
Moise Skewed Integrated
{0%,20% 40%} Features Performance

{0%,60%,80%}  Guarantees

Fig. 7: Inference of performance guarantees in a (n=200,m=500)-space with varying
degree of planted noise (as a percentage of domain values) and skewed features (as
a percentage of total features).

Fig.8 assesses the impact of adopting different conditional distributions for the
inference of general performance guarantees for C4.5. Understandably, the ex-
pected error increases when the overlapping area between conditional distributions
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is higher or when a particular class is described by a mixture of distributions. Com-
bining such hard settings with more easy settings gives rise to loose performance
bounds and to a residual number of significant superiority relations between mod-
els. Still, this assessment is required to validate and weight the increasing number
data-independent implications of performance from the recent studies.

Performance Bounds from
accuracy  Changing Data Regularities
1.00

W o=3: N(-1,0), N{0,o), N{1,0)

075 Bo=5: N(-1,0), N(0,0), N[1,a)
050 BN(-1|2,0), N[0,0), Ni-2|1,0) o=3
025 O Mixtures

O Integrated Bounds
0.00

Data Distributions

Fig. 8: Inference of performance guarantees from (n=200,m=500)-spaces with dif-
ferent regularities described in Table 5.

Descriptive Models. The previous principles are extensible towards descriptive
models under an adequate loss function and sampling method to collect estimates.
This means that the introduced significance views, decomposition of the error and
inference of guarantees from flexible data settings become applicable to different
types of models, such as (bi)clustering models and global descriptive models. Fig.9
illustrates the performance bounds of BicPAM biclustering model!! using three dis-
tinct loss functions computed from estimates collected from datasets generated with
identical size, dimensionality and underlying regularities (according to Table 6).
The target loss functions are the traditional match scores (Preli¢ et al. 2006), which
assess the similarity of the discovered biclusters B and planted biclusters H based
on the Jaccard index'?, and the Fabia consensus!3 (Hochreiter et al. 2010). The ob-
served differences on the mean and variability of performance per loss function are
enough to deliver distinct Friedman-test results when comparing multiple descrip-
tive models. Therefore, the retrieved implications should be clearly contextualized
as pertaining to a specific loss function, sampling scheme, data setting and signifi-
cance threshold.

11 http://web.ist.utl.pt/ rmch/software/bicpam/

12 MS(B,H) defines the extent to what found biclusters match with hidden biclusters, while
MS(H,B) reflects how well hidden biclusters are recovered:

MS(B,H) = ‘}ﬁz(ll ,Jl)eBmax(lz,Jz)eH%

13 Let S1 and S, be, respectively, the larger and smaller set of biclusters from {B,H}, and MP be
the pairs B <+ H assigned using the Munkres method based on overlapping areas (Munkres 1957):

_ 1 |[hNL[x |10
FC(B,H) = \SI\E(U] J1)ES1(B2)E€82) EMP T X[ [+l [ X 2 |- [T NIy [ [T1 3 |
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Fig. 9: Performance assessment over biclustering models (BicPAM) using distinct
loss functions — Fabia consensus, and match scores M(B,H) and M(H,B) — and a
collection of error estimates from 20 data instances per data setting.

Final Discussion. In this chapter, we synthesized critical principles to bound and
compare the performance of models learned from high-dimensional datasets. First,
we surveyed and provide empirical evidence for the challenges related with this task
for (n,m)-spaces where n<m. This task is critical as implications are derived from
studies where the differences in performance of classification models learned over
these spaces against permuted and null spaces is not significant. Also, the width
between the estimated confidence intervals of performance is considerably high in
these spaces, leading to the absence of significant results from Friedman compar-
isons.

Second, motivated by these challenges, we have shown the importance of adopt-
ing robust statistical principles to test the feasibility of the collected estimates. Dif-
ferent tests for computing significance levels have been proposed, each one pro-
viding different levels of conservatism, which can be used to validate and weight
the increasing number of implications derived from the performance of models in
high-dimensional spaces.

Third, understanding the source of variability of the performance of the models
is critical in these spaces as this variability can be either related with the overfitting
aspect of the models or with the learning complexity associated with the dataset.
The variability of performance can, thus, be further decomposed in variance and
bias. While the variance captures the differences on the behavior of the model across
samples from the target population, which is indicative of the model capacity (see
Fig.2), the bias captures the learning error associated within the available samples.
These components disclose the why behind the inferred performance guarantees
and, thus, are critical to understand and refine the model behavior.

Fourth, we compared alternative ways of bounding and comparing performance,
including different sampling schema, loss functions and statistical tests. In particu-
lar, we used initial empirical evidence to show how different estimators can bias the
true error or smooth its variability.

An alternative to the inference of performance guarantees from estimates is to
approximate the true performance from the properties of the learned models. For this
latter line of research two strategies can be followed. A first strategy is to retrieve
guarantees from the learned parameters from multivariate models that preserve the
original dimensionality (Ness and Simpson 1976; El-Sheikh and Wacker 1980). A
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second strategy is to understand the discriminative significance of the selected local
subspaces from the original space when a form of feature-set selection is adopted
during the learning process (Singhi and Liu 2006; Iswandy and Koenig 2006).

Fifth, the impact of varying data regularities on the performance guarantees was
also assessed, including spaces with varying degrees of the 7 ratio, (conditional)
distributions, noise, imbalance among classes (when considering classification mod-
els), and uninformative features. In particular, we observed that inferring general
bounds and comparisons from flexible data settings is possible, but tends to orig-
inate very loose guarantees when mixing data settings with very distinct learning
complexities. In those cases, a feasible trade-off would be to simply group data set-
tings according to the distributions of each collection of error estimates.

Finally, we have shown the applicability of these principles for additional types
of models, such as descriptive models.

5 Conclusion

Motivated by the challenges of learning from high-dimensional data, this chapter
established a solid foundation on how to assess the performance guarantees given
by different types of learners in high-dimensional spaces. The definition of adequate
estimators of the true performance in these spaces, where the learning is associated
with high variance and bias from error estimates, is critical. We surveyed a set of
approaches that provide distinct principles on how to bound and compare the perfor-
mance of models as a function of the data size. A taxonomy to understand their ma-
jor challenges was proposed. These challenges mainly result from their underlying
assumptions and task goals. Existing approaches often fail to provide a robust per-
formance guarantees, are not easily extensible to support unbalanced data settings or
assess non-discriminative models (such as local and global descriptive models), and
are not able to infer guarantees from multiple data settings with varying properties,
such as locally correlated features, noise, and underlying complex distributions.

In this chapter, a set of principles is proposed to answer the identified chal-
lenges. They offer a solid foundation to select adequate estimators (either from
data sampling or direct model analysis), loss functions, and statistical tests sensi-
tive to the pecularities of the performance of models in high-dimensional spaces.
Additionally, these principles provide critical strategies for the generalization of
performance guarantees from flexible data settings where the underlying global and
local regularities can vary. Finally, we briefly show that these principles can be in-
tegrated within a single methodology. This methodology offers a robust, flexible
and complete frame to bound and compare the performance of models learned over
high-dimensional datasets. In fact, it provides critical guidelines to assess the per-
formance of upcoming learners proposed for high-dimensional settings or, com-
plementary, to determine the appropriate data size and dimensionality required to
support decisions related with experimental, collection or annotation costs.
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Experimental results support the relevance of these principles. We provided em-
pirical evidence for the importance of computing adequate significance views to
adjust the statistical power when bounding and comparing the performance of mod-
els, of selecting adequate error estimators, of inferring guarantees from flexible data
settings, and of decomposing the error to gain further insights on the source of its
variability. Additionally, we have experimentally shown the extensibility of these
decisions for descriptive models under adequate performance views.

This work opens a new door for understanding, bounding and comparing the
performance of models in high-dimensional spaces. First, we expect the application
of the proposed methodology to study the performance guarantees of new learners,
parameterizations and feature selection methods. Additionally, these guarantees can
be used to weight and validate the increasing number of implications derived from
the application of these models over high-dimensional data. Finally, we expect the
extension of this assessment towards models learned from structured spaces, such
as high-dimensional time sequences.
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