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Abstract. We analyse a quantum-like Bayesian Network that puts to-
gether cause/effect relationships and semantic similarities between events.
These semantic similarities constitute acausal connections according to
the Synchronicity principle and provide new relationships to quantum
like probabilistic graphical models. As a consequence, beliefs (or any
other event) can be represented in vector spaces, in which quantum pa-
rameters are determined by the similarities that these vectors share be-
tween them. Events attached by a semantic meaning do not need to have
an explanation in terms of cause and effect.
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1 Introduction

Current decision-making systems face high levels of uncertainty resulting from
data, which is either missing or untrustworthy. These systems usually turn to
probability theory as a mathematical framework to deal with uncertainty. One
problem, however, is that it is hard for these systems to make reliable predictions
in situations where the laws of probability are being violated. These situations
happen quite frequently in systems which try to model human decisions (Tversky
and Kahnenman, 1974; Tversky and Kahneman, 1983; Tversky and Shafir, 1992).

Uncertainty in decision problems arises, because of limitations in our abil-
ity to observe the world and in limitations in our ability to model it (Koller
and Friedman, 2009). If we could have access to all observations of the world
and extract all the information it contained, then one could have access to the
full joint probability distribution describing the relation between every possible
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random variable. This knowledge would eliminate uncertainty and would enable
any prediction. This information, however, is not available and not possible to
obtain as a full, leading to uncertainty. A formal framework capable of repre-
senting multiple outcomes and their likelihoods under uncertainty is probability
theory (Murphy, 2012).

In an attempt to explain the decisions that people make under risk, cognitive
scientists started to search for other mathematical frameworks that could also
deal with uncertainty. Recent literature suggests that quantum probability can
accommodate these violations and improve the probabilistic inferences of such
systems (Aerts, 1995; Busemeyer et al., 2006; Bordley, 1998).

Quantum cognition is a research field that aims at using the mathematical
principles of quantum mechanics to model cognitive systems for human deci-
sion making (Busemeyer, 2015; Busemeyer and Wang, 2014; Aerts, 2014). Given
that Bayesian probability theory is very rigid in the sense that it poses many
constraints and assumptions (single trajectory principle, obeys set theory, etc.),
it becomes too limited to provide simple models that can capture human judg-
ments and decisions, since people are constantly violating the laws of logic and
probability theory (Tversky and Kahnenman, 1974; Tversky and Kahneman,
1983; Tversky and Shafir, 1992). Recent literature suggests that quantum prob-
ability can be used as a mathematical alternative to the classical theory and can
accommodate these violations (Mura, 2009; Lambert-Mogiliansky et al., 2009;
Aerts et al., 2011). It has been showed that quantum models provide significant
advantages towards classical models (Busemeyer et al., 2015, 2012).

In this work, we explore the implications of causal relationships in quantum-
like probabilistic graphical models and also the implications of semantic simi-
larities between quantum events (Moreira and Wichert, 2015). These semantic
similarities provide new relationships to the graphical models and enables the
computation of quantum parameters through vector similarities.

This work is organised as follows. In Sections 2 and 3, we address two types
of relationships, respectively: cause/effect and acausal relationships. In Section
4, we describe a quantum-like Bayesian Network that takes advantages of both
cause/effect relationships and semantic similarities (acausal events). In Section 5,
we show and analyse the applications of the proposed model in current decision
problems. Finally, in Section 6, we conclude with some final remarks regarding
the application of quantum-like Bayesian Networks to decision problems.

2 What is Causation

Most events are reduced to the principle of causality, which is the connection of
phenomena where the cause gives rise to some effect. This is the philosophical
principle that underlies our conception of natural law (Jung and Pauli, 2012).

Under the principle of causality, some event A can have more than one cause,
in which none of them alone is sufficient to produce A. Causality is usually: (1)
transitive, if some event A is a cause of B and B is a cause of C, then A is also a
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cause of C; (2) irreflexible, an event A cannot cause itself; and (3) antisymmetric,
if A is a cause of B, then B is not a cause of A (Spirtes et al., 2000).

The essence of causality is the generation and determination of one phe-
nomenon by another. Causality enables the representation of our knowledge
regarding a given context through experience. By experience, we mean that the
observation of the relationships between events enables the detection of irrele-
vancies in the domain. This will lead to the construction of causal models with
minimised relationships between events (Pearl, 1988). Bayesian Networks are
examples of such models.

Under the principle of causality, two events that are not causally connected
should not produce any effects. When some acausal events occur by producing
an effect, it is called a coincidence. Carl Jung, believed that nothing happens by
chance and, consequently, all events had to be connected between each other,
not in a causal setting, but rather in a meaningful way. Under this point of view,
Jung proposed the Synchronicity principle (Jung and Pauli, 2012).

3 Acausal Connectionist Principle

The Synchronicity principle may occur as a single event of a chain of related
events and can be defined by a significant coincidence which appears between a
mental state and an event occurring in the external world (Martin et al., 2009).
Jung believed that two acausal events did not occur by chance, but rather by
a shared meaning. Therefore, in order to experience a synchronised event, one
needs to extract the meaning of its symbols for the interpretation of the syn-
chronicity. So, the Synchronicity principle can be seen as a correlation between
two acausal events which are connected through meaning (Jung and Pauli, 2012).

Jung defended that the connection between a mental state and matter is due
to the energy emerged from the emotional state associated to the synchronicity
event (Jung and Pauli, 2012). This metaphysical assertion was based on the fact
that it is the person’s interpretation that defines the meaning of a synchronous
event. This implies a strong relation between the extraction of the semantic
meaning of events and how one interprets it. If there is no semantic extraction,
then there is no meaningful interpretation of the event, and consequently, there
is no synchronicity (Lindorff, 2004).

It is important to mention that the Synchronicity principle is a concept that
does not question or compete with the notion of causality. Instead, it maintains
that just as events may be connected by a causal line, they may also be connected
by meaning. A grouping of events attached by meaning do not need to have an
explanation in terms of cause and effect.

In this work, we explore the consequences of the synchronicity principle ap-
plied to quantum states with high levels of uncertainty as a way to provide addi-
tional information to quantum-like probabilistic graphical models, which mainly
contain cause/effect relationships. Although the principles of probability are well
established, such that synchronicity might be seen as the occurrence of coinci-
dences, in the quantum mechanics realm, given the high levels of uncertainty
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that describe the quantum states, the coincidences or improbable occurrences
happen quite often.

4 Quantum-Like Bayesian Networks: Combining Causal
and Acausal Principles for Quantum Cognition

The reason why we are turning to Bayesian Networks is because they are in-
spired in human cognition (Griffiths et al., 2008). It is easier for a person to
combine pieces of evidence and to reason about them, instead of calculating all
possible events and their respective beliefs. In the same way, Bayesian Networks
also provide this link between human cognition and rational inductive inference.
Instead of representing the full joint distribution, Bayesian Networks represent
the decision problem in small modules that can be combined to perform infer-
ences. Only the probabilities which are actually needed to perform the inferences
are computed.

4.1 Classical Bayesian Networks

A classical Bayesian Network is a directed acyclic graph structure. Each node
represents a different random variable from a specific domain and each edge rep-
resents a direct influence from the source node to the target node. The graph also
represents independence relationships between random variables and is followed
by a conditional probability table which specifies the probability distribution of
the current node given its parents (Koller and Friedman, 2009).

A Bayesian Network represents a full joint probability distribution through
conditional independence statements in order to answer queries about the do-
main. The full joint distribution (Russel and Norvig, 2010) of a Bayesian Net-
work, where X is the list of variables, is given by Equation 1.

Prc(X1, . . . , Xn) =

n∏
i=1

Pr(Xi|Parents(Xi)) (1)

In order to answer queries, the network enables the combination of the relevant
entries of the full joint probability distribution. This process consists in the
computation of the marginal probability distribution of the network. Let e be
the list of observed variables and let Y be the remaining unobserved variables
in the network. For some query X, the inference is given by Equation 2.

Prc(X|e) = α

∑
y∈Y

Prc(X, e, y)

Where α =
1∑

x∈X Prc(X = x, e)
(2)

The summation is over all possible y, i.e., all possible combinations of values of
the unobserved variables y. The α parameter, corresponds to the normalisation
factor for the distribution Pr(X|e) (Russel and Norvig, 2010). This normalisa-
tion factor comes from some assumptions that are made in Bayes rule.
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4.2 From Classical Bayesian Networks to Quantum-Like Networks

Suppose that we have a Bayesian Network with three random variables with the
following structure: B ← A→ C. In order to determine the probability of node
B, we would need to make the following computation based on Equation 2.

Pr(B = t) = Pr(A = t)Pr(B = t|A = t)Pr(C = t|A = t)+

+ Pr(A = t)Pr(B = t|A = t)Pr(C = f |A = t)+

+ Pr(A = f)Pr(B = t|A = f)Pr(C = t|A = f)+

+ Pr(A = f)Pr(B = t|A = f)Pr(C = f |A = f) (3)

A classical probability can be converted into a quantum probability amplitude in
the following way. Suppose that events A1, . . . , AN form a set of mutually disjoint
events, such that their union is all in the sample space, Ω, for any other event
B. The classical law of total probability can be formulated like in Equation 4.

Pr(B) =

N∑
i=1

Pr(Ai)Pr(B|Ai) where:

N∑
i=1

Pr(Ai) = 1 (4)

The quantum law of total probability can be derived through Equation 4 by
applying Born’s rule (Caves et al., 2002; Nielsen and Chuang, 2000):

Pr(B) =

∣∣∣∣∣∣
N∑
j=1

eiθjψAj
ψB|Aj

∣∣∣∣∣∣
2

where:

N∑
j=1

∣∣eiθjψAj

∣∣2 = 1 (5)

Returning to our example, in order to convert the real probabilities in Equation 3
into quantum amplitudes, one needs to apply Born’s rule. In Equation 6, the term
ψ1e

θ1 corresponds to the quantum probability amplitude of the term Pr(A =
t)Pr(B = t|A = t)Pr(C = t|A = t); the term ψ2e

θ2 corresponds to the quantum
probability amplitude of the term Pr(A = t)Pr(B = t|A = t)Pr(C = f |A = t)
and so on.

Pr(B = t) =
∣∣ψ1e

θ1 + ψ2e
θ2 + ψ3e

θ3 + ψ4e
θ4
∣∣2

(6)

Expanding Equation 6,

Pr(B = t) =
∣∣ψ1e

θ1
∣∣2+
∣∣ψ2e

θ2
∣∣2+
∣∣ψ3e

θ3
∣∣2+
∣∣ψ4e

θ4
∣∣2+
∣∣ψ1e

θ1
∣∣ ∣∣ψ2e

θ2
∣∣+∣∣ψ2e

θ2
∣∣ ∣∣ψ1e

θ1
∣∣+

+
∣∣ψ1e

θ1
∣∣ ∣∣ψ3e

θ3
∣∣+
∣∣ψ3e

θ3
∣∣ ∣∣ψ1e

θ1
∣∣+
∣∣ψ1e

θ1
∣∣ ∣∣ψ4e

θ4
∣∣+
∣∣ψ4e

θ4
∣∣ ∣∣ψ1e

θ1
∣∣+

+
∣∣ψ2e

θ2
∣∣ ∣∣ψ3e

θ3
∣∣+
∣∣ψ3e

θ3
∣∣ ∣∣ψ2e

θ2
∣∣+
∣∣ψ2e

θ2
∣∣ ∣∣ψ4e

θ4
∣∣+
∣∣ψ4e

θ4
∣∣ ∣∣ψ2e

θ2
∣∣+

+
∣∣ψ3e

θ3
∣∣ ∣∣ψ4e

θ4
∣∣+
∣∣ψ4e

θ4
∣∣ ∣∣ψ3e

θ3
∣∣ (7)
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Knowing that, 2 cos(θ1 − θ2) = eiθ1−iθ2 + eiθ2−iθ1 , then Equation 8 becomes:

Pr(B = t) =

N∑
i

|ψi|2 + 2 |ψ1| |ψ2| cos(θ1 − θ2) + 2 |ψ1| |ψ3| cos(θ1 − θ3)+

+2 |ψ1| |ψ4| cos(θ1−θ4)+2 |ψ2| |ψ3| cos(θ2−θ3)+· · ·+2 |ψ3| |ψ4| cos(θ3−θ4) (8)

Equation 8 can be rewritten as:

Pr(B = t) =

N∑
i

|ψi|2 + 2

N−1∑
i=1

N∑
j=i+1

|ψi| |ψj | cos(θi − θj) (9)

4.3 Quantum-Like Bayesian Network

A quantum-like Bayesian Network can be defined in the same way as a classical
Bayesian Network with the difference that real probability numbers are replaced
by quantum probability amplitudes (Tucci, 1995; Leifer and Poulin, 2008).

The quantum counterpart of the full joint probability distribution corre-
sponds to the application of Born’s rule to Equation 1. This results in Equa-
tion 10, where QPr corresponds to a quantum amplitude.

Prq(X1, . . . , Xn) =

∣∣∣∣∣
n∏
i=1

QPr(Xi|Parents(Xi))

∣∣∣∣∣
2

(10)

When performing probabilistic inferences in Bayesian Networks, the probabil-
ity amplitude of each assignment of the network is propagated and influences
the probabilities of the remaining nodes. In order to perform inferences on the
network, one needs to apply Born’s rule to the classical marginal probability
distribution, just like in was presented in Equation 9. If we rewrite this equation
with the notation presented in Equation 3, then the quantum counterpart of the
classical marginalization formula for inferences in Bayesian Networks becomes:

Prq(X|e) = α

|Y |∑
i=1

∣∣∣∣∣
N∏
x

QPr(Xx|Parents(Xx), e, y = i)

∣∣∣∣∣
2

+2·Interference (11)

Interference =

|Y |−1∑
i=1

|Y |∑
j=i+1

∣∣∣∣∣
N∏
x

QPr(Xx|Parents(Xx), e, y = i)

∣∣∣∣∣ ·∣∣∣∣∣
N∏
x

QPr(Xx|Parents(Xx), e, y = j)

∣∣∣∣∣ · cos(θi − θj)

In classical Bayesian inference, normalisation of the inference scores is necessary
due to the independence assumptions made in Bayes rule. In quantum-like in-
ferences, we need to normalize the final scores, not only because of the asme
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independence assumptions, but also because of the quantum interference term.
If the conditional probability tables of the proposed quantum-like Bayesian Net-
work were double stochastic, then this normalization would not be necessary.
But, since in the proposed model we do not have this constraint, then a normal-
ization is required after the computation of the probabilistic inference.

Following Equation 11, when cos(θi − θj) equals zero, then it is straight-
forward that quantum probability theory converges to its classical counterpart,
because the interference term will be zero.

For non-zero values, Equation 11 will produce interference effects that can af-
fect destructively the classical probability (when the interference term in smaller
than zero) or constructively (when it is bigger than zero). Additionally, Equa-
tion 11 will lead to a large amount of θ parameters when the number of events
increases. For N binary random variables, we will end up with 2N parameters.

4.4 Semantic Networks: Incorporating Acausal Connections

A semantic network is often used for knowledge representation. It corresponds
to a directed or undirected graph in which nodes represent concepts and edges
reflect semantic relations. The extraction of the semantic network from the orig-
inal Bayesian Network is a necessary step in order to find variables that are only
connected in a meaningful way (and not necessarily connected by cause/effect
relationships), just like it is stated in the Synchronicity principle.

Consider the Bayesian Network in Figure 1 (Russel and Norvig, 2010; Pearl,
1988). In order to extract its semantic meaning, we need to take into account
the context of the network. Suppose that you have a new burglar alarm in-
stalled at home. It can detect burglary, but also sometimes responds to earth-
quakes. John and Mary are two neighbours, who promised to call you when they
hear the alarm. John always calls when he hears the alarm, but sometimes con-
fuses telephone ringing with the alarm and calls too. Mary likes loud music and
sometimes misses the alarm. From this description, we extracted the semantic

Fig. 1. Example of a Quantum-Like Bayesian Network (Russel and Norvig, 2010). QPr
represents quantum amplitudes. Pr corresponds to the real classical probabilities.
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network, illustrated in Figure 2, which represents the meaningful connections
between concepts. The following knowledge was extracted. It is well known that
catastrophes cause panic among people and, consequently, increase crime rates,
more specifically burglaries. So, a new pair of synchronised variables between
Earthquake and Burglar emerges. Moreover, John and Mary derive both from
the same concept person, so, these two nodes will also be synchronised. These
synchronised variables mean that, although there is no explicit causal connec-
tion between these nodes in the Bayesian Network, they can become correlated
through their meaning.

Fig. 2. Semantic Network representation of the network in Figure 1

4.5 Setting Quantum Parameters According to the Synchronicity
Principle

In Section 4.3, it was presented that Equation 11 generates an exponential num-
ber of quantum θ parameters according to the number of unknown variables. If
nothing is told about how to assign these quantum parameters, then we end up
with an interval of possible probabilities. For instance, Figure 3 shows that, the
probabilities for the different random variables of the Quantum-Like bayesian
Network from Moreira and Wichert (2014) can range from an interval of possible
probability values. This means that one needs some kind of heuristic function
that is able to assign these quantum parameters automatically. We define the

Fig. 3. Variation of the probability values of the Bayesian Network in Figure 1 for
different quantum parameters (Moreira and Wichert, 2014).

Synchronicity heuristic in a similar way to Jung’s principle: two variables are said
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to be synchronised, if they share a meaningful connection between them. This
meaningful connection can be obtained through a semantic network representa-
tion of the variables in question. This will enable the emergence of new mean-
ingful connections that would be inexistent when considering only cause/effect
relationships. The quantum parameters are then tuned in such a way that the
angle formed by these two variables, in a Hilbert space, is the smallest possible,
this way forcing acausal events to be correlated.

For the case of binary variables, the Synchronicity heuristic is associated with
a set of two variables, which can be in one of four possible states. The Hilbert
space is partitioned according to these four states, as exemplified in Figure 4.
The angles formed by the combination of these four possible states are detailed
in the table also in Figure 4 (Moreira and Wichert, 2015). In the right extreme

Fig. 4. Encoding of the Synchronized variables with their respective angles (left). Two
synchronized events forming an angle of π/4 between them (right).

of the Hilbert space represented in Figure 4, we encoded it as the occurrence of
a pair of synchronised variables. So, when two synchronised variables occur, the
smallest angle that these vectors make between each other corresponds to θ = 0.
The most dissimilar vector corresponds to the situation where two synchronised
variables do not occur. So, we set θ to be the largest angle possible, that is π.

The other situations correspond to the scenarios where one synchronised vari-
able occurs and the other one does not. In Figure 4, the parameter θ is chosen
according to the smallest angle that these two vectors, i and j, make between
each other, that is π/4. We are choosing the smallest angle, because we want
to correlate these two acausal events by forcing the occurrence of coincidences
between them, just like described in the Synchronicity principle. The axis cor-
responding to π/2 and 3π/2 were ignored, because they correspond to classical
probabilities (cos (π/2) = cos (3π/2) = 0). We are taking steps of π/4 inspired
by the quantum law of interference proposed by Yukalov and Sornette (2011),
in which the authors suggest to replace the quantum interference term by 1/4.

5 Example of Application

We queried each variable of the network in Figure 1 without providing any obser-
vation. We performed the following queries: Pr(JonhCalls = true), Pr(MaryCalls =
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true), Pr(Alarm = true), Pr(Burglar = true) and Pr(Earthquake = true).
We then extracted both classical and quantum inferences and represented the
results in the graph in Figure 5.

Fig. 5. Results for various queries comparing probabilistic inferences using classical
and quantum probability when no evidences are observed: maximum uncertainty.

Figure 5, shows that, when nothing is known about the state of the world,
quantum probabilities tend to increase and overcome their classical counterpart.
In quantum theory, when nothing is observed, all nodes of the Bayesian Network
are in a superposition state. For each possible configuration in this superposition
state, a probability amplitude is associated to it. During the superposition state,
the amplitudes of the probabilities of the nodes of the Bayesian Network start
to be modified due to the interference effects. If one looks at the nodes as waves
crossing the network from different locations, these waves can crash between
each other, causing them to be either destroyed or to be merged together. This
interference of the waves is controlled through the Synchronicity principle by
linking acausal events.

When one starts to provide information to the Bayesian Network, then the
superposition state collapses into another quantum state, affecting the configura-
tion of the remaining possible states of the network. Moreover, by making some
observation to the network, we are reducing the total amount of uncertainty and,
consequently, the reduction of the waves crossing the network (Table 1).

Evidences Pr( Alarm = t ) Pr( Earthquake = t ) Pr( Burglar = t ) Pr( JohnCalls = t ) Pr( MaryCalls = t )

C
L
A
S
S
IC

JohnCalls = t 0.2277 0.0949 0.1333 1.0000 0.1671
MaryCalls = t 0.5341 0.2033 0.3119 0.5040 1.0000
Earthquake = t 0.2966 1.0000 0.0100 0.3021 0.2147
Burglar = t 0.9402 0.0200 1.0000 0.8492 0.6587
Alarm = t 1.0000 0.3581 0.5835 0.9000 0.7000

Q
U
A
N
T
U
M JohnCalls = t 0.3669 0.1484 0.2124 1.0000 0.2321

MaryCalls = t 0.6598 0.2239 0.3474 0.6032 1.0000
Earthquake = t 0.4389 1.0000 0.0124 0.4012 0.2403
Burglar = t 0.9611 0.02 1.0000 0.8583 0.6337
Alarm = t 1.0000 0.3431 0.5560 0.9000 0.7000

Table 1. Probabilities obtained when performing inference on the Bayesian Network
of Figure 1.
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In Table 1 there are two pairs of synchronised variables: (Earthquake, Bur-
glar) and (MaryCalls, JohnCalls). The quantum probability of Pr(Earthquake =
t|JohnCalls = t) has increased almost the same quantity as for the probability
Pr(Burglar = t|JohnCalls = t) (56.37% for earthquake and 59.34% for bur-
glar). In the same way, when we observe that MaryCalls = t, then the percent-
age of a Burglary increased 11.38%, whereas Earthquake increased a percentage
of 10.13% towards its classical counterpart.

6 Conclusions

In this work, we analysed a quantum-like Bayesian Network that puts together
cause/effect relationships and semantic similarities between events. These sim-
ilarities constitute acausal connections according to the Synchronicity principle
and provide new relationships to the graphical models. As a consequence, events
can be represented in vector spaces, in which quantum parameters are deter-
mined by the similarities that these vectors share between them. In the realm
of quantum cognition, quantum parameters might represent the correlation be-
tween events (beliefs) in a meaningful acausal relationship.

The proposed quantum-like Bayesian Network benefits from the same advan-
tages of classical Bayesian Networks: (1) it enables a visual representation of all
relationships between all random variables of a given decision scenario, (2) can
perform inferences over unobserved variables, that is, can deal with uncertainty,
(3) enables the detection of independent and dependent variables more easily.
Moreover, the mapping to a quantum-like approach leads to a new mathematical
formalism for computing inferences in Bayesian Networks that takes into account
quantum interference effects. These effects can accommodate puzzling phenom-
ena that could not be explained through a classical Bayesian Network. This is
probably the biggest advantage of the proposed model. A network structure that
can combine different sources of knowledge in order to model a more complex
decision scenario and accommodate violations to the Sure Thing Principle.

With this work, we argue that, when presented with a problem, we per-
form a semantic categorisation of the symbols that we extract from the given
problem through our thoughts Osherson (1995). Since our thoughts are abstract,
cause/effect relationships might not be the most appropriate mechanisms to sim-
ulate interferences between them. The Synchronicity principle seems to fit more
in this context, since our thoughts can relate to each other from meaningful
connections, rather than cause/effect relationships (Jung and Pauli, 2012).

We end this work with some reflections. Over the literature of quantum cog-
nition, quantum models have been proposed in order to explain some paradoxical
findings (Pothos and Busemeyer, 2009; Haven, 2013). These decision problems,
however, are very small. They are modelled with at most two random variables.
Decision problems with more random variables suffer from the problem of the
exponential generation of quantum parameters (like in Burglar/Alarm Bayesian
Network). For more complex problems, how can one model them, since the only
apparent way to do so, is through the usage of heuristic functions that can assign
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values to the quantum θ parameters? But even through this method, given the
lack of experimental data, how can one validate such functions? Is the usage of
these functions a correct way to tackle this problem, or is it wrong to proceed
in this direction? How can such experiment be conducted? Is it even possible to
show violations on the laws of probability theory for more complex problem?
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