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Expert Finding

Information
  Retrieval
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Why Expert Finding?

Too many documents

Information is dispersed

Need answers quickly
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Related Work
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Candidate Centric Approach
1. Gather documents associated to a candidate

2. Merge documents into a single profile document

3. Rank the profile according to the query
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Document Centric Approach
1. Gather documents containing query topics

2. Uncover candidates and rank them
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Problems?

Generative Probabilistic Models

Only based on textual contents

Simple heuristics

Heuristics do not reflect expertise
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Our Approach
A set of features to estimate expertise

Features combined in a learning to rank framework
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Learning to Rank (L2R)
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L2R Approaches

• Pointwise 

• Pairwise

• Listwise
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L2R Pointwise Approaches

Use feature vectors for each 

individual <q, x>

Goal: directly support the

application of existing algorithms

of regression or classification
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L2R Pairwise Approaches

Use feature vectors for each 

pair <q, x1, x2>

Goal: minimize number of 

misclassified document pairs
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L2R Listwise Approaches

Use feature vectors for the

list <q, x1, x2, ..., xm>

Goal: optimize an Information

Retrieval evaluation metric
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Features

Textual Similarities

Profile Information

Graph Structure
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Textual Features
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Textual Features

BM25

TF

IDF
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Profile Features
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Profile Features

Number of Publications

Years Between Publications

Number of Articles
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Graph Features
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Graph Features

Citations Graphs

Co-authorship Graphs

Academic Indexes
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Academic Indexes Measure Scientific 
Impact!
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Academic Indexes

H-Index

G-Index

A-Index
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H Index

A given author has a Hirsch Index of h, if h

of his N papers have at least h citations each
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H Index - Example
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H Index - Example

Hirsch	
  Index
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G Index

Is the largest number such that the top g papers

received on average at least g citations each
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a Index

Measures the magnitude of the most influential

papers of a given author
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First work using academic indexes

to estimate Expertise!
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Learning to Rank (L2R)
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L2R Algorithms Tested

•  SVMmap (Y. Yue and T. Finley)

•  SVMrank (T. Joachims)

Based on the formalisms of Support Vector Machines:
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Support Vector Machines

Basic idea:

Construct an N-dimensional hyperplane to separate 
data points.
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SVMmap

Optimizes MAP by minimizing a loss function which 
measures the difference between a perfect ranking 

and the performance of an incorrect ranking
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SVMrank

Constrains the default SVM optimization 
problem to perform to minimization of misclassified 

pairs of experts
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Dataset

DBLP Computer Science Bibliography

Contains citation links

Covers journal and conference publications

Contains publication’s abstracts
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Dataset for Validation

Arnetminer

Based on people from 

Program Committees of 

important conferences 

Contains a set of people considered experts

Contains 13 different query topics
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Experimental Results
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SVMmap vs SVMrank (%)

81,5081,31

94,58 93,33

89,79 91,04
87,78 88,48 87,21 86,98

MAP P@5 P@10 P@15 P@20

SVMrank

SVMmap
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Impact of the Features?
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Text	
  +	
  Profile	
  +	
  Graph

Text	
  +	
  Profile

Text	
  +	
  Graph

Profile	
  +	
  Graph

Text	
  

Profile

Graph

81,50	
  %

66,01	
  %

76,77	
  %

79,43	
  %

65,69	
  %

74,64	
  %

78,46	
  %

Impact of the Features?
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SVMrank Impact in the State of 
the Art?
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SVMrank vs State of the Art (MAP)

Balrog’s	
  Model	
  2 39,15	
  %
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SVMrank vs State of the Art (MAP)

Balrog’s	
  Model	
  2

Yang’s	
  SVMrank

39,15	
  %

63,56	
  %
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SVMrank vs State of the Art (MAP)

Balrog’s	
  Model	
  2

Yang’s	
  SVMrank

Our	
  Approach	
  
	
  	
  	
  (SVMrank)

39,15	
  %

63,56	
  %

81,50	
  %
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Thank You!

Questions?
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