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Motivation Example

Classical Probability vs Quantum Probability
Violations of Probability Theory ( related Work )
Classical Bayesian Networks

Quantum Bayesian Networks



The Sure Thing Principle (Savage, 1954):

If one chooses action A over B under state of

the world X and if one also chooses action A

over B in the state of the world =X, then one

should always choose action A over B even if
the state of the world is unknown.

L. Savage (1954), The Foundations of Statistics. John Wiley & Sons Inc.
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Motivation — Th_e,Two Stage




Motivation — The Two Stage

- Gambling Game

Participants were asked to play a gambling game that
has an equal chance of winning $200 or loosing $100.

Three conditions were verified:

* Informed that they won the 15t gamble;
* Informed that they lost the 15t gamble;

* Did not know if they won or lost the 15t gamble;

A Tversky and E Shafir, E. (1992), ‘The disjunction effect in choice under uncertainty’,
Journal of Psychological Science 3, 305-309



Motivation — The Two Stage

- Gambling Game

Experimental results:

e Participants who knew they had won, decided to
PLAY again;

A Tversky and E Shafir, E. (1992), ‘The disjunction effect in choice under uncertainty’,
Journal of Psychological Science 3, 305-309



Motivation — The Two Stage

- Gambling Game

Experimental results:

e Participants who knew they had won, decided to
PLAY again;

* Participants who knew they had lost, decided to
PLAY again;

A Tversky and E Shafir, E. (1992), ‘The disjunction effect in choice under uncertainty’,
Journal of Psychological Science 3, 305-309



Motivation — The Two Stage

- Gambling Game

The Sure Thing Principle:

State of the world State of the world State of the world
“1st gamble = won” “1st gamble = lose” “1st gamble = ?”

A Tversky and E Shafir (1992), ‘The disjunction effect in choice under uncertainty’,
Journal of Psychological Science 3, 305-309



Motivation — The Two Stage

- Gambling Game

Experimental results:

e Participants who knew they had won, decided to
PLAY again;

e Participants who knew they had lost, decided to
PLAY again;

e Participants who did not know anything, decided to
NOT PLAY again;

A Tversky and E Shafir, E. (1992), ‘The disjunction effect in choice under uncertainty’,
Journal of Psychological Science 3, 305-309



Motivation — The Two Stage

_—Gambling Game

Experimental results:

e Participants who knew they had won, decided to

PL
' ff: VIOLATES THE SURE THING @t
oo PRINCIPLE! et
NOEE

A Tversky and E Shafir, E. (1992), ‘The disjunction effect in choice under uncertainty’,
Journal of Psychological Science 3, 305-309
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CLASSICAL PROBABILITY QUANTUM PROBABILITY

Andrey Kolmogorov John von Neumann
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Classical vs Quantum Probability >

g




Suppose you are a juror trying to judge whether a
defendant is Guilty or Innocent.

What are the differences

between classical and

guantum probabilities?




CIassnc Quantum Space

Q\_.

’

CLASSICAL

* Events are contained in a sample space, Q.
Corresponds to the set of all possible outcomes.

Q = { Guilty, Innocent} Sample Space Q

Innocent Guilty




CIassn alvs Quantum: Space

= e

QUANTUM
* Events are contained in a Hilbert Space, H.

* Events are spanned by a set of orthonormal basis

vectors, representing all possible outcomes
Guilty

/N

H = {I Guilty>,| Innocent>} [ )

- ‘ , il>nnocent
\ //' (Not Guilty)
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Classical .ys Quantum: Events
— —

CLASSICAL

* Can be defined by a set of outcomes to which a
probability is assigned.

e Can be mutually exclusive and obey set theory;

* QOperations defined: Sample Space Q
— Intersection

— Union

— Distribution

Innocent Guilty
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Classical .ys Quantum: Events
— T=_ -

QUANTUM
* Events correspond to subspaces spanned by a set of
basis vectors

* Are defined through a superposition state, which
1| Guilty)

comprises the occurrence of all
| S) = Superposition
State
events; /
k/ ﬁnnocent)
(Not Guilty)
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Classical .ys Quantum: Events
— T=_ -

The superposition state:

ieguilty

f e
1§) = | Innocent ) + | Guilty
. )+ <1 Guilty)
Quantum Normalization Axiom: 1| Guilty)

|S)= Supsetar;;:sltion
ei Qimzocent 2 ei Gguilty 2
| =5 |
| S >
V2 V2 k/ ieontd
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Classical_vs Quantum: Ev
- —

Quantum Normalization Axiom:

-

1| Guilty)

| S) = Superposition

ﬁnnocent)
(Not Guilty)

ei quilty

Z e

¢ Oinnocent ¢ Oguitty 1
V2 v2 K
¢! Oinnocent ¢! Oinnocent 3 ¢ Oguilry
o |
-( ) (%) ()
iBinnocent —€Oinnocent ¢ Osuitty—¢ >

V2

) -

1

() (S )=

V2V2 V2V2
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Classical vs Quantum: System State
_— T=~_. -

CLASSICAL

* isafunction that is responsible to assign a probability value to
the outcome of an event.

* In our example, if nothing is told to the juror about the
guiltiness or innocence of the defendant, then:

Pr(Guilty) = 0.5



Classical vs Quantum: System State
-_— S=—_ -

QUANTUM

* The system state is a unit-length N-dimensional vector,
defined by a superposition state, that maps events into
probabilities;

* The state is projected onto the subspaces corresponding to an
event;

* The probability of the event corresponds to the squared
length of this projection;
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Classical vs Quantum: System State
-_— T=~_. -

QUANTUM

* The system state is a unit-length N-dimensional vector,
defined by a superposition state, that maps events into
probabilities;

i0 10

innocent guilty

| Innocent ) +
g "

§)="1 | Guilty)
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Classical vs Quantum: System State
-_— T=~_. -

QUANTUM

* The state is projected onto the subspaces corresponding to an

event;
1| Guilty)

| S) = Superposition
Fo State

lllnnocent)
(Not Guilty)
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Classical vs Quantum: System State
-_— T=~_. -

QUANTUM

* The probability of the event corresponds to the squared
length of this projection;

ei einnocem ei eguilt y

Innocent ) +
gz [mmecent) + =75

ei Oguilt_v ei eguilt_v * O 5
- (59) (S -

|S)

\Guilty)

eieguilr)' 2

V2

Pr(|Guilty)) =




-~
.
-

Classical vs Quantum: State Revision
_— T=_. -

CLASSICAL

e An event is observed and we want to determine the
probabilities after observing this fact

* Uses the conditional probability formula:

Pr(Innocent N\ Guilty)

Pr(Innocent|Guilty) = Pr(Guilty)




Classical vs Quantum: State Revision
_— T=_. -

QUANTUM

* Changes the original state vector by projecting the original
state onto the subspace representing the observed event;

* The length of the projection is used as a normalization factor

Tty
~._ S =Superposition
y,/! sG \\ ;‘\\\ State
Pols) /T
u", ,V \
S p— [ . \
| G > Y l >
| |PG S> | | \ | Innocent
\ / (Not Guilty)




Classical vs Quantum: State Revision

S=_ e

P|S)
S —
56) = ipgISV]
~ (1/V2)|Guilty)
SG) =
V(1/v/2)2

Sg) = 1|Guilty) + 0|Innocent)
Pr(|Innocent)) = 0* =0

"~ S =Superposition

State

I Innocent

/ (Not Guilty)



Classical Law of Tatal Probability

Suppose that events A, A,, ..., Ay form a set of mutually
disjoint events, such that their union is all in the sample
space for any other event B.

Then, the classical law of total probability can be
formulated in the following way:

N
Zpr )Pr(B|A;)  where: Y A;=1
1=1
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Quantum Law of Total Probability

The quantum law of total probability can be derived by
converting classical probabilities into quantum amplitudes!

BORN'SRULE: Pr(A) = | e YA °

The quantum law of total probability is given by:

2 N

N
Pr(B) =Y €% a,1pa, Z
r=1

r=1

0 2
e’ “ha | =1




e —
_—

Interference Effects -
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‘ p_;gpf,_e rence Effects

Quantum law of total probability:

% 2
Pr(B) = Zeiewaowmm
|
] ei91—i92 i ei@g—iel
Knowing that cos(6; — 6,) = , then...

2

Pr(B) =) |va,¥p)a, > + Interference
o |
N—-1 N

Interference = 2 o
i=1 j=i+1

Vactpia| [asvmia;| cos(0: — 05)




Quantum law of total probability:

N 2
Pr(B) = |y €%, 1bpa,
r=1
. 201 109 6292 —161
Kngaias -+ + , then...

Cla55|cal Probablllty 2

Quantum Interference

N-1 N

Interference = 2> D |¢Aﬂ/)B|Az-|’¢’Aj@/)B|AJ- cos(f; — 6;)
i=1 j=i+1




The parameters generated in quantum interference
effects grow at a very fast rate relatively to the
number of unknown events.

The problem of automatically tune these parameters

is still an open research question!

Num. §'s

Num. Unobserved Nodes | Number of f’s || Num. Unobserved Nodes
6 2016 11
7 8128 12
8 32640 13
9 130816 14

10 523776 15

2096128

8386560
33550336
134209536
536854528
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Violations _of Prfin‘a*bility Theory F
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Violations of Prob\a\bility "Fhéory: -

~Order-ofEffects
Qa. Do you generally think that Qa. Do you generally think that

Passos Coelho is honest and Ramalho Eanes is honest and

trustworthy? (50%) 3 trustworthy? (68%)

Q2. How about Ramalho Eanes? Q2. How about Passos Coelho?

(57%) A




Violations of Probgbility "l:‘héory:

—OrderofEffects

Q1. Do you generally think that . Qa.Doyou generally think that
Passos Coelho is honest ang « Ramalho Eanes is honest and
| : istworthy? (68%) -

~.

o
Q2. How about Passos Coelho?
¥ (57%)




Violations of Probablllty Theory

__-Order-ofEffects

Cn

Cx Axis: Passos Coelho

0.4 :
0.2} ]

0
Cy

o | Gx Axis: General
| Ramalho Eanes

1 25 0 05 1



Violations of Probablllty Theory

—Order-ofEffects

Using a quantum model, the probability of responses
differ when asked first vs. when asked second.

Ramalho Eanes Passos Coelho

Cn

' .
Cy Pc*S Sc o Cy Pc*So




Violations of Probablllty Theory

__-Order-ofEffects

Passos Coelho is a honest person:
1S) = 0.8367|P) + 0.5477P)

General Eanes is a honest person:
1S} = 0.9789|G) — 0.2043G)

Analysis of the first question — Passos Coelho

Pr(Cy) = ||P¢|S)|I? = |0.8367|2 = 0.70
Pr(Cn) = ||P;|S)||? = 0.5477|2 = 0.30



Violations of Probablllty Theory

__-Order-ofEffects

Passos Coelho is a honest person:
1S) = 0.8367|P) + 0.5477P)

General Eanes is a honest person:
1S} = 0.9789|G) — 0.2043G)

Analysis of the first question — General Eanes

Pr(Gy) = ||P;|S)||? = |0.9789|% = 0.9582
Pr(Gn) = ||P;|S)||? = |-0.2043)% = 0.0417



Violations of Probablllty Theory:‘

__-Order-ofEffects

Analysis of the first question:

Pr(Cy) = ||P:|S)||? = |0.8367|2 = 0.70 = c

Pr(Cn) = ||P|S)||? = |0.5477|% = 0.30

Pr(Gy) = ||P;|S)||? = ]0.9789|% = 0.9582
Pr(Gn) = ||P;|S)|I? = |-0.2043|% = 0.0417 =

Analysis of the second question:

Cy

Pr(Cy) = (0.96).(0.50) + (0.04). (0.50) = 0.50

Pr(Gy) = (0.70).(0.50) + (0.30).(0.50)= 0.50




Violations of Prob\a\bility "I-?iiéory: —

_—Order-ofEffects

According to this simplified two-dimensional
guantum model:

* Large difference between the agreement rates for
two politicians in a non-comparative context: 70%
for Passos Coelho and 96% for General Eanes

* There is no difference in the comparative context:
50% for both



Violations of Probability "Fhéory: -
—OrderofEffects -

e T
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Violations of Prolngility\"l"‘h‘eory:

- Ofdey

315 active doctors were asked to estimate the
probability that a specific patient had a urinary
tract infection (UTI) given the patient’s history and
physical examination along with laboratory data



Violations of Prolngility\"l"‘h‘eory:

- Order

The physicians were divided into two groups:

* One receiving the history and physical
examination information first (H&P-first)

e The other receiving the laboratory data first
(H&P-last).



Violations of Prolngility".lfh‘eory: |

-~ Otrderof Effects

Results:

H & P First H & P Last
Prior Probability Pr(UTI) = 0.6740 Pr(UTI) = 0.6780

First Set of Evidences | Pr(UTI|H&P) = 0.778 Pr(UTI|Lab) = 0.4400
Final Set of Evidences | Pr(UTI|H&P, Lab) = 0.5090 | Pr(UTI|Lab, H&P) = 0.5910

Classical probability fails to explain this, because:

p(B|HN A)
p(B| A4)

p(4|HN B)
p(4|B)

p(H|ANB)=p(H|A)- =p(H|B)- =p(H|BN 4)



Violations of Prolngility\"l"‘h‘eory:

- Order

In Trueblood & Busemeyer (2011) the authors
proposed a quantum model to simulate the
previous results.

* They project the initial superposition state into
the subspace representing the observed event

* then they compute the squared modulus of this
projection to extract the probabilities
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Violations of Probability Theory: The
___SureThingPrinciple -




Violations of Prolo\gbility‘?héory:‘ —

Two Stage.Gambling Game

Participants were asked to play a gambling game that
has an equal chance of winning $200 or loosing $100.
Three conditions were verified:

* Informed that they won the 15t gamble;
* Informed that they lost the 15t gamble;

* Did not know if they won or lost the 15t gamble;

A Tversky and E Shafir, E. (1992), ‘The disjunction effect in choice under uncertainty’,
Journal of Psychological Science 3, 305-309



Violations of Prob;a\bility"?héory:‘

Two Stage.Gambling Game

Unobserved

K

\

N: Decides NOT
to play 2nd game
(N|W)

G: Decides to
GAMBLE again



Violations of Probability Tiigofy: The_

—

vo-Stage-Gambling Game

Results
Results from the two-stage gambling task
Study Known win | Known loss | Unknown | N¢
Tversky & Shafir 0.69 0.58 0.37 169
Tversky & Shafir® 0.73 0.63 0.79 144
Kihberger et al. 0.72 0.47 0.48 188
Lambdin & Burdsal 0.63 0.45 0.41 165
Average 0.68 0.50 0.42
Quantum model 0.72 0.52 0.38

¢ N refers to the number of choices included in each proportion.




Violations of Prolngility".lfh‘eory: |

e Two Stage-Gambling Game

’

Quantum model:

Law of total amplitude:

Pr((G|U)) = [(W|U)G|W) + (LIUNGIL)|

= (W|UXG|W)|? + KLIUXGIL)|* +
+2. Re[(W|UNG|W)L|UXG|L). Cos 6]




Violations of Prob\gbility\ fhéory:

e Two Stage-Gambling Game

— -
0.65
06
MAX quantum MAX quantum’
probability classical probability
probability
055}
2
3
<
:
05
045
quantum probability
* to explain [15)
04 | | | | 1 1 |
0 pi/4 pi/2 3pi/4 pi -3pi /4 -pi/2 -pi /4 0

Anagle
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Violations of Probability Theory: The
_Deubte Slit-Experiment -
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The Double Slit-Experiment

* Asingle electron is dispersed from a light
source

* The electron must pass through one of two

channels ( C1 or C2 ) from which it can reach
one of the two detectors (D1 or D2).
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Double Slit-Experiment :

e Two conditions are examined:

— The channel through which the electron passes in
is observed.

— The channel through which the electron passes in
is not observed.



The results ( when observing ):

Observed Resulting Pattern

electrons H © ©
O

0000 70
BP0 ©
0g © ©

light source
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The Double Slit-Experiment |

The results ( when not observing ):

Unobserved Resulting Pattern

electrons %
(%)

0 © 0 0O O
R %P0 ©
0 o O O

light source
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The Double Slit-Experiment .

e T

Single-slit pattern

Double-slit pattern




The Double Slit-Experiment

e Let’s analyze the first condition (when the
path of the electron was observed)!

Observed

electrons i © O
o (#) (#) ()

0000 %
o OOOO 0
(%) 0 © ©

light source I © 0

© O ©

Resulting Pattern




The Double SIit‘\!Expefif;\ént

_(€lassieal Rrobabilit
observed
0.5 C1 0.5 D1
‘< 05 5
light source 05 D2
- 0.5
B 0.5 0.5] _
Pr(c1l) =[0.5 0] 0s o5l = [0.25 0.25]
B 0.5 0.5]
Pr(c2) =[0 0.5] ot o0&l = 10.25 0.25]

Pr(c1 or c2) = Pr(cl) + Pr(c2) = [0.5 0.5]



The Double SIit‘\!Expefif;\ént

(Quantem-Probabilit

-

light source 1/ 2l

cl=[1/V2i 0]

c2=10 1/V2il

1/x/§i

1/V2i
1/V2i

1/2i

observed

1/vV2i | o,

1/ 21

/V2i

—1/\/2_1' D2

1/V2i |
—1/V2i,

1/V2i |
—1/V2i

Pr(clor c2) = c1? + c2%? = [0.5

=[-0.5 —0.5]

=[-0.5 -0.5]

0.5]
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The Double Slit-Experiment :

When the paths were observed, both classical and
gquantum probabilities obtained the same results!



The Double Slit-Experiment :

* Let’s analyze the second condition (when the
path of the electron was not observed)!

electrons H

light source

o

0© 00 "0
H P00 ©
5g 0 8

Unobserved

Resulting Pattern




Unobserved Resulting Pattern

electrons q
()

0000 %
o Lo ©
0 o O O

light source




Unobserved Resulting Pattern

electrons i
O

000070
2 P ©
(% o © O '

light source




The Double SIit‘\!Expefif;\ént

_(€lassieal Rrobabilit
Unobserved

0.5 c 05 o1

‘< 0.5 0.5

light source 05 D2
€2 0.5

Pr(c1) = [0.5 0] g'g 8'? =[0.25 0.25]

- 05 051
Pr(c2) = [0 0.5][05 0e| = 1025 0.25]

Pr(c1 or c2) = Pr(cl) + Pr(c2) = [0.5 0.5]



The Double SIit“!Expefif;\ent

. (€lassical Rrobabilit

Unobserved

O 5 C1 0.5

0.5

D1

D2

Cannot Explam the
Interference Pattern!

- LU.O 0.5l

Pr(c1 or c2) = Pr(cl) + Pr(c2) = [0.5 0.5]



The Double SIit‘\!Expefif;\ént

__(QuantumsProbabilit

Unobserved

1/\/2_1 c1 1/\/Z D1
1

‘< /N2 V2i
light source 1/ 21 | .

c2 —1/V2i

1/V/21 1/\/71']
1/V2i —1/V2i

12 = [1/4/21 1/\/§i]| =[-1 0]

Pr(c12) =c12? =[1 0]
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The Double Slit-Experiment

* |f we do not observe the system

 Then, we cannot assume that one of only two
possible paths are taken

* In Quantum theory, the state is superposed
between the two possible paths!

 Quantum Theory REJECTS the single path
trajectory principle
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Time to‘S_ggthe Bguble Slit Effect!!!

T _
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Bayesian Networks ¢
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Bayesian Networks

Directed acyclic graph structure in which each node
represents a different random variable and each
edge represents a direct causal influence from
source node to the target node.



— -

.
-

Bayesian Networks

The graph represents independence relationships
between variables and each node is associated with
a conditional probability table



Bayesian Networks — Classical

What is the probability of node C, given that node A
was observed to occur?

Pr(A)=0.3 Pr(B)=0.5

N

P(C|AB)
0.8
0.7
0.4

0.02

m m A A\ »
m <4 m 4@




Bayesian Networks — Classical

What is the probability of node C, given that node A
was observed to occur?

Exact inference in classical Bayesian Networks:

Pre(X|e) = aPre(X, €) = a [Z Pre(X,e,y)

yeY

o

1

Where o =
Zx'eX PrC(X :x:e)




Bayesian Networks — Classical

What is the probability of node C, given that node A
was observed to occur?

Pr(A=t)Y Pr(B=b)Pr(C=tA=t,B=0)

o




Bayesian Networks — Classical

Full Joint probability distribution:

Pr(A, B, C)

0.3X0.5X0.8=0.12
0.3X0.5X0.2=0.03
0.3X0.5X0.7=0.105
0.3X 0.5 x 0.3 = 0.045

We don‘t need to
compute the entries

where A is False!

m M m m A A A A >
mM M 4 4 M M 4 4| W@
mM 4 M 4 m 4 M AN



Bayesian Networks — Classical -

-~ nference

Full Joint probability distribution and normalize:

A B C Pr(A, B, C) Pr(A, B, C)

T T T | 03X05X08=0.12 0.4

T T F| 03X05X0.2=0.03 0.1

T F T | 03X0.5X0.7=0.105 0.35

T F F| 03X0.5x0.3=0.045 0.15
Sum 0.3 1




Bayesian Networks — Classical -

Full Joint probability distribution and normalize:

Just sum the entries whereC=T

A B C Pr(A, B, C) Pr(A, B, C)
T T T| 03X05X0.8=0.12 0.4
T T F| 03X05X0.2=0.03 0.1
T F T | 03X05X0.7=0.105 0.35
T F F| 03X0.5x03=0.045 0.15



Bayesian Networks — Classical

Full Joint probability distribution and normalize:

Just sum the entries whereC=T
Pr(C=t|A=t,B)=0.75

A B C Pr(A, B, C) Pr(A, B, C)
T T T| 03X05X0.8=0.12 0.4
T T F| 03X05X0.2=0.03 0.1
T F T | 03X05X0.7=0.105 0.35
T F F| 03X0.5x03=0.045 0.15



A Model for Quantum Bayesian
Networks with Interference Effects

. > g
'
. : .
\v
e ; o -
4 : _~
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Bayesian Networks — Quantum -

Given a normal Bayesian Network, the first step of
the model is to compute complex amplitudes out of
real values using Born’s rule!

Pr(A) =| GwA?,bA |2
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Bayesian Networks — Quantum -

What is the probability of node C, given that node A

was observed to occur?
Pr(A)=+0.3e" Pr(B)=/0.5¢%

N

A B | P(C|AB)
T T| J08%
T F | Jo7¢*
F T | J04e%
F_F | J0.02¢"
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Bayesian Networks — Quantum -

What is the probability of node C, given that node A

was observed to occur?

Exact inference in quantum Bayesian Networks:

Y

) |]

i=1

Pr,(Xle) =

[ 0Pr(X,|Parents(X,)

X'

yi—1r Y| |~

+2) )

i=1 j=i+l

X

HQPr(Xr|Parents(X.‘.),e’y —

ey =i)

)

X

[1

2
4

QPr(Xy|Parents(Xy),e,y = j)| cos(6; — 6;)
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Bayesian Networks —Q‘u‘antum‘ -

What is the probability of node C, given that node A
was observed to occur?

The full joint probability distribution corresponds to
the superposition state:

1S4) = v0.3464€°* | ABC)4++/0.1732¢72| ABC)+-

+v/0.3240¢e%3 | ABC)++/0.2121e%| ABC)



Bayesian Networks — Quantum

The full joint probability distribution table:

QPrA( A, B,C)
1/0.3¢% x v/0.5€%2 x /0.8¢% = 0.3464e%1 792105 = (0.3464¢%
v/0.3e% x 1/0.5e%2 x 4/0.2¢% = 0.17320:+02+0s — (0.1732¢02
V/0.3e?1 x 1/0.5€9%2 x 4/0.7e% = 0.32400:1t02+03 — (.3240¢e%s
v/0.3e?1 x 1/0.5€%2 x 4/0.3e% = 0.21219: 102163 — (.2121¢%+
V/0.7€%7 x 1/0.5e%2 x 1/0.4e% = 0.3742¢07 102163 = (.3742¢%
V/0.7¢97 x 1/0.5€%2 x 1/0.6e% = 0.4583ef7 102109 = ().4583¢%
v/0.7€97 x 1/0.5€% x 1/0.002¢% = 0.083707+95t0s — (0,0837¢?"
V0.7€%7 x 1/0.5e% x 1/0.98e% = 0.585707+0s+0s — (. 5857¢0

Sl e RN N N W
£ B B B Bies Bies B B Tl ew,
" HYS9MHQ
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_—inference

The normalized full joint probability distribution table:

A B C|QPrA(A,B,C) | NQPrA(A,B,C)

T T T 0.3464¢% 0.6325ef1 = 1/0.4¢%
T T F 0.1732¢?2 0.3162¢%2 = 1/0.1€?2
T F T 0.3240¢0 0.5915e% = /0.35¢%s
T F F 0.2121e% 0.3873e%4 = 1/0.15e%
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What is the probability of node C, given that node A

Pr(A)=03¢" Pr(B) =/0.5¢"

e

was observed to occur?

h
[=IRNERP
IR
4} > 2 oW
gm“u

Selecting the entries of interest:

| Fo=t|a=t,8=t|S) + Pc=t|a=t,5=1|S5) |2
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=" infefence

What is the probability of node C, given that node A
Pr(A)=03¢" Pr(B)=40.5¢"

was observed to occur?

N

k=
T J0.7¢%
J0.4¢
\0.02¢%

| 2

| Po=tia=t.B=t|S) + Pr—tia= p=£|S)

Classical Probability
Pr(C=tlA=tB)= + 2v/0.4v/0.35 cos(0; — 65)

Quantum Interference
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Problems with the current quantum Bayesian
Networks of the literature:

* They do not make use of quantum interference
effects found in cognitive science literature. This
means that the quantum network does not have

any advantages compared to its classical
counterpart!
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Problems with the current quantum Bayesian
Networks from the literature:

* The number of quantum parameters grow
exponentially with the amount of uncertainty in
the network. There are no efforts in the literature
that attempt to solve this parameter tuning
automatically



Thank Youl!!!

Questions?



