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Motivation

Quantum probability and interference etfects play an important
role in explaining several inconsistencies in decision-making.
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Motivation

Current models of the literature have the following problems:

1. Require a manual parameter tuning to perform predictions;

2. Hard to scale for more complex decision scenarios;




Research Question

Can we build a general quantum
probabilistic model to make
predictions in scenarios with high

levels of uncertainty?



Bayesian Networks

Directed acyclic graph structure in which each node represents a
random variable and each edge represents a direct influence

from source node to the target node.

Pr(B=T)=0.001
Pr(B=F)=0.999

Pr(E=T)=0.002
Pr(E=F)=0.998

Pr(A=T|B,E) Pr(A=F|B,E)
TT 0.95 0.05
TF 0.94 0.06
FT 0.29 0.71

FF 0.01 0.99




Bayesian Networks

Inference is performed in two steps:
1. Computation of the Full Joint Probability Distribution
2. Computation of the Marginal Probability

Full Joint Probability

Distribution:
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Bayesian Networks

Inference is performed in two steps:
1. Computation of the Full Joint Probability Distribution
2. Computation of the Marginal Probability

Full Joint Probability

Distribution:

Bayes Assumption

. oy Pr.(X|e)=aPr.(X,e) =« Pr.(X,e,y)| |w l
Marginal Probability: SRS Auth [; X ¢ ] Where @ = =



Inference in Bayesian Networks

1. Compute the Full Joint Probability Distribution

i=1

X,) = l I Pr(X;|Parent s(X;))

BEA

Pr(A,B,E)

TTT
TTF
TFET
TFF
FTT
FTF
FFT
FFF

0.001! x[0:002|x[0:95]= 0.00000190
0.001 x 0.002 x 0.05 = 0.00000010
0.001 x 0.998 x 0.94 = 0.00093812
0.001 x 0.998 x 0.06 = 0.00005988
0.999 x 0.002 x 0.29 = 0.00057942
0.999 x 0.002 x 0.71 = 0.00141858
0.999 x 0.998 x 0.01 = 0.00997002
0.999 x 0.998 x 0.99 = 0.98703198

Pr( B =T) =[0:001
Pr(B=F)=0.999

BE
TT
TF
FT
FF

Pr(E=T) =[0:002]
Pr(E=F)=0.998
Pr(A=T|B,E) | Pr(A=F|B,E)
10.95] 0.05
0.94 0.06
0.29 0.71
0.01 0.99




Inference in Bayesian Networks

2. Compute Marginal Probability

» (Y o) -y Pr © ) — » (Y o v
Pr.(X tl—(l[ll.\.t—UEZ{II(.[.\.L\) Where o —
Ve

BEA Pr(A, B, E)
TTT | 0.001x 0.002 x 0.95 = 0.00000190
TTF | [0.001 x 0.002 x 0.05 = 0.00000010 |
TFT | 0.001x0.998 x 0.94 = 0.00093812
TEF | 0.001 x 0.998 x 0.06 = 0.00005988
ETT | 0999 x0.002x 029 =0.00057942
FTF |[0.999x0.002 x 0.71 = 0.00141858 |
FET | 0.999x 0.998 x 0.01 = 0.00997002
FFE | 0.999 x 0.998 x 0.99 = 0.98703198

l

Pr(B.A=T.E =T) =




Research Question

How can we move from a classical
Bayesian Network to a Quantum-

Like paradigm?



Quantum-Like Bayesian Networks

General idea:

- Under unobserved events, the Quantum-Like Bayesian
Network can use interference effects;

- Under known events, no interference is used, since there is no
uncertainty.

Evidence Variable

Unobserved
Variables

Query Variable

Moreira & Wichert (2014), Interference Effects in Quantum Belief Networks, Applied Soft Computing, 25, 64-85



Interference Effects

Convert classical probabilities are converted into quantum
amplitudes through Born’s rule: squared magnitude quantum
amplitudes.

For two dichotomous random variables:

- Classical Law of Total Probability:

Pr(B=1)=Pr(A=t)-Pr(B=t/A=1)+Pr(A=f)-Pr(B=t|A= f)

- Quantum Law of Total Probability:
2

Pr(B=1)=|) Ya=a¥B—ra—a

acA




Interference Effects

Quantum Law of Total Probability:

2

Pr(B=t)= Z YAa=a¥YB=t|A=a

acA

If we expand this term we obtain:

Pr(B=1)=|Wact Vp—rja—|” + | Wazr Wp—ria—s|’

+2 [T |vwa=aW¥=ja=a| cos (64 — 6p)

acA




Interference Effects

Quantum Law of Total Probability for 2 random variables:

2

Pr (B = t) = Z YA=a¥B=t|A=a

acA

If we expand this term we obtain: Classical Probability

Pr(B=1)=YactWp—qa=| +|Wa=rWo-ra=s|

+2 [ ] |Wa=aVB=rja=a| cos (64 — 6p)

acA

Quantum Interference



Quantum-Like Bayesian Networks

Convert classical probabilities are converted into quantum
amplitudes through Born’s rule: squared magnitude quantum
amplitudes.

- Classical Full Joint Probability Distribution:

- Quantum Full Joint Probability Distribution:

2
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Quantum-Like Bayesian Networks

Convert classical probabilities are converted into quantum
amplitudes through Born’s rule: squared magnitude quantum
amplitudes.

- Classical Marginal Probability Distribution:

Pr.(X|e)=aPr.(X,e)=« [Z Pr.(X,e, y)]

ye¥

- Quantum Marginal Probability Distribution:




Quantum-Like Bayesian Networks

- Quantum marginal probability;

- Extension of the Quantum-Like Approach (Khrennikov, 2009) for
N random variables;

2

Y N
Pr,(X|e) = }'Z HQPr (X,|Parents(X,),e,y=1i)| +2-Interference
[ X

Inter ference =

Y|—1

) z HQPr(X |Parents (X;) e,y = i) HQPr (X,|Parents(X,),e,y = j)|cos(6; — 6;
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Case Study

We studied the implications of the
proposed Quantum-Like Bayesian

Network in the literature



Quantum-Like Bayesian Networks

Pr(B=T)=0.001 Pr(E=T)=0.002
Pr(B=F)=0.999 Pr(E=F)=0.998

Pr(A=T|B,E) Pr(A=F|B,E)
0.90 0.10
0.30 0.70
0.20 0.80
0.01 0.99

A | Pr(J=T|A) | Pr(J=F | A) A | Pr(M=T |A)]l Pr(M=F|A)
T 0.90 0.10 T 0.70 0.30
F 0.05 0.95 F 0.01 0.99

J. Pearl. (1988). Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann Publishers Inc.



Quantum-Like Bayesian Networks

What happens if we try to compute the probability of A =t, given
that we observed | = t?

Classical Probability:

Pr(A=tlJ=1)=yPr(J=t|A=1t) ) Pr(B=b) Y Pr(E=e)Pr(A=t|B=b,E=¢) Y Pr(M =m|A=1t)
beB ‘

ecE meM

Quantum Probability:

2 _
PrA=tlJ=t)=Y Z ’WJ_:A_rWB—bWE_eV’A_:;B_b.g_e%rf_mA_z| +2-Interference
beB.ecE meM
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Quantum-Like Bayesian Networks

What happens if we try to compute the probability of A =t, given
that we observed | = t?

Classical Probability:
Pr(A=tlJ=1)=yPr(J=t|A=1t) ) Pr(B=b) Y Pr(E=e)Pr(A=t|B=b,E=¢) Y Pr(M =m|A=1t)
beRB eck meM
Will generate

2
PriA=tlJ=t)=7 ), |Wea—tVB-bVE—eWa—1|B—bE—cVn—ma—| 1 2-Interference
beB.ecE meM

Moreira & Wichert (2014), Interference Effects in Quantum Belief Networks, Applied Soft Computing, 25, 64-85



Problem!

The number of parameters grows exponentially LARGE!

The final probabilities can be ANYTHING in some range!

Moreira & Wichert (2014), Interference Effects in Quantum Belief Networks, Applied Soft Computing, 25, 64-85



Problem!

Quantum parameters are very sensitive.

Small changes can lead to completely different probability values

or can stabilize in a certain value!

08—

® Classical Probability

® Observed Probability




Research Question

How can we deal automatically with
an exponential number of quantum

parameters?



Synchronicity is an acausal
principle and can be defined by a
meaningful coincidence which

appears between a mental state

and an event occurring in the
external world.

(Carl G. Jung, 1951)



The Synchronicity Principle

Natural laws are statistical truths. They are only valid when
dealing with macrophysical quantities.

In the realm of very small quantities prediction becomes
uncertain.

The connection of events may be other than causal, and
requires an acausal principle of explanation.

Moreira & Wichert (2015), The Synchronicity Principle Under Quantum Probabilistic Inferences, NeuroQuantology, 13, 111-133



Research Question

How can we use the Synchronicity
Principle in the Quantum-Like
Bayesian Network and estimate

quantum parameters?



Semantic Networks

Synchronicity Principle: defined by a meaningful coincidence
between events.

Semantic Networks can help finding events that share a semantic

such as | NATURAL
EARTHQUAKE DISASTERS

trigger

meaning.

DEVICES BURGLARY

are heard by

NEIGHBOURS

Moreira & Wichert (2015), The Synchronicity Principle Under Quantum Probabilistic Inferences, NeuroQuantology, 13, 111-133
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Semantic Networks
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Causal Networks

Moreira & Wichert (2015), The Synchronicity Principle Under Quantum Probabilistic Inferences, NeuroQuantology, 13, 111-133
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Quantum-Like Bayesian Network +
Semantic Network

Synchronicity

Pr(B=T)=0.001
Pr(B=F)=0.999

Pr(E=T)=0.002
Pr(E=F)=0.998

Pr(A=T|B,E) Pr(A=F|B,E)

0.90 0.10

VEN) 0.70

0.20 0.80

0.01 0.99
A | Pr(J=T [A) | Pr(J=F | A) Synchr0n1c1ty A | Pr(M=T |A)] Pr(M=F|A)
T | 0.9 0.10 T | 070 ED)
F ‘ 0.05 \ 0.95 F ‘ 0.01 \ 0.99

Moreira & Wichert (2015), The Synchronicity Principle Under Quantum Probabilistic Inferences, NeuroQuantology, 13, 111-133




The Synchronicity Heuristic

The interference term is given as a sum of pairs of random
variables.

Heuristic: parameters are calculated by computing different vector
representations for each pair of random variables.

N : x1 x1 x2
Pr(B) = o [Z Wi * + 2|4y |-|aa| -cos (61 — 02)+2: |91 |1ha]-cos (61 — 83)+2-|1)2|-|1pa|-cos (62 — 63) |

=1

Moreira & Wichert (2015), The Synchronicity Principle Under Quantum Probabilistic Inferences, NeuroQuantology, 13, 111-133



The Synchronicity Heuristic

Since, in quantum cognition, the quantum parameters are seen as
inner products, we represent each pair of random variables in 2-
dimenional vectors.

We need to represent both assignments of the binary random
variables

Moreira & Wichert (2015), The Synchronicity Principle Under Quantum Probabilistic Inferences, NeuroQuantology, 13, 111-133



The Synchronicity Heuristic

Using the semantic network, variables that did not share any
dependence could be connected through their semantic meaning.

Variables that occur during the inference process should be more

correlated than variables that do not occur. We use a quantum step
phase angle of 7 /4 (Yukalov & Sornette, 2010).

Assignments of Variables Angle

var) occurs vary occurs
var, occurs var, not occurs
vary not occurs | vary occurs

vary not occurs | varp not occurs

Moreira & Wichert (2015), The Synchronicity Principle Under Quantum Probabilistic Inferences, NeuroQuantology, 13, 111-133



The Synchronicity Heuristic

Variables that occur during the inference process should be more
correlated than variables that do not occur.

Moreira & Wichert (2015), The Synchronicity Principle Under Quantum Probabilistic Inferences, NeuroQuantology, 13, 111-133



Research Question

How can an acausal connectionist
theory affect quantum probabilistic

inferences?



Classical vs Acausal Quantum
Inferences

High levels of uncertainty during the inference process, lead to
complete different results from classical theory.

Pr( MaryCalls = t) Pr(JohnCalls =t) Pr( Earthquake =t) Pr( Alarm = Pr(Burglar=t)

Classical Probability " Quantum Probability
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Classical vs Acausal Quantum
Inferences

More evidence leads to lower uncertainty, which leads to an
approximation to the classical inference.

Pr(E=t|E) PriB=t|E) Pr(J=t|E) Pr(M=t|E) Pr(A=t|E) Pr(E=t|E) Pr(J=t|E) Pr(M=t|E)

Pr(A=t|E) PHB=t|E) Pr(J=t PHM=t|E)

PHA=t|E) PHE=t|E) Pr(B=t|E) PM=t|E)



Conclusions

1. Applied the mathematical formalisms of quantum theory to
develop a Quantum-Like Bayesian Network;

2. Used a Semantic Network to find acausal relationships;
3. An heuristic was created to estimate quantum parameters;
4. Quantum probability is “stronger” with high levels of uncertainty;

5. With less uncertainty, the Quantum-Like network collapses to its
classical counterpart;



Some Concluding Reflections

Can we validate this model for more complex decision
problems?

Can we propose an experiment?




